1 Cooperative Vehicle-
‘ Infrastructure Systems

D.CVIS.3.4 Final Architecture and
System Specifications
SubProject No. 1.2 SubProject Title CAG
Workpackage No. |WP3 Workpackage Title Architecture and
system

specifications

Task No. n.a.

Task Title D3.4

Author(s)

Arnor Solberg (QFREE), Andreas Schmid (PTV), Mick
Baggen(Technolution), Francesco Alesiani (Mizar), Hannes
Stratil (Efkon), Richard Bossom (Siemens), Silke Forkert
(PTV), Marius Schlingelhof (DLR), Axel Burkert (PTV),
Sjoerd Haverkamp (PEEK), Paul Mathias (Siemens), Zeljko
Jeftic (ERTICO), Knut Evensen(Q-Free), Erik Olsen (Q-
Free), Hans-Joachim Fischer (Q-Free), Imre Fazekas
(Ygomi), Jean-Francois Gaillet (Ygomi)

Dissemination level PU/PP/RE

PU

File Name DEL_CVIS_3.4_Final_Architecture_and_System_
Specifications_v1.0.doc

Due date 28 February 2010

Delivery date 04 June 2010

Abstract This document presents the final overall Architecture and System

Specifications of the CVIS integrated project. It presents a view
into CVIS core technologies architecture and reference
applications.

E Eutafesan ComemiLion

Project supported by European Union DG INFSO

IST-2004-2.4.12 eSafety -— Cooperative systems for road transport

Project reference FP6-2004-1ST-4-027293-1P

IP Manager Paul Kompfner, ERTICO — ITS Europe

Tel: +32 2 400 0700, E-mail: cvis@mail.ertico.com

«"CVIS

CVIS Architecture and
System Specifications

Control sheet

Version history

Version Date Main author Summary of changes
0.5 11-03-2010 Hans-Joachim Fischer | Update of D.CVIS:3.3
0.7 30-03-2010 Matthias Mann Update of chapter 4.6 — Cooperative
traffic information
0.9 20-05-2010 Imre Fazekas, Jean- Update of security part
Francois Gailletr
1.0 04-06-2010 Hans-Joachim Fisher / | Final version
Erik Olsen
Name Date
Prepared Erik Olsen / Hans-Joachim Fischer 09-03-2010
Reviewed Knut Eve.nsen3 Matthias Mann, 26-04-2010
Jean-Francois Gaillet
Authorized Paul Kompfner 04/06/2010
Circulation
Recipient Date of submission
European Commission 04/06/2010
Project Consortium 04/06/2010
04-06-2010 II Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Table of Contents
EXECUTIVE SUMMARY

ABBREVIATIONS AND DEFINITIONS
REFERENCE DOCUMENTATION
1 INTRODUCTIONcceverrurrnernnsaesaesacssenns

1.1 INTENDED AUDIENCE
1.2 DOCUMENT STRUCTURE
2 CVIS OVERVIEW.....eeeeceeererreeeseeenonenns

2.1 COOPERATIVE SYSTEMS - SETTING THE SCENE
2.2 CVIS MAIN SUB-SYSTEMS
2.3 CVISHOSTS...oetviieeiiiieiieeieeeieeeeeenn
2.4 INTERMEDIATE ARCHITECTURE
2.5 LAYERED ARCHITECTURE
2.6 CVIS HIGH LEVEL COMPONENT ARCHITECTURE
2.7 DESIGN DECISIONS AND CONSTRAINTS
3 BASIC FACILITIES.......ccocceereesercsancssasens

3.1 OSGIFRAMEWORK & LIFECYCLE MANAGEMENT
3.2 DISTRIBUTED DIRECTORY SERVICE
3.3 SECURITY FRAMEWORK
3.4 BROADCAST ...ccciiieiitirirreeeeeeeeeevvreeeeans
3.5 CONNECTION MANAGER

3.6 HUMAN MACHINE INTERFACE

3.7 LOCAL DEVICE TREE

4 DOMAIN FACILITIES

4.1 POSITION AND MAP MATCHING
4.2 INFRASTRUCTURE POSITION
4.3 MAPPROVISIONcccceerieereenreenreeneneennes
4.4 LOCATION REFERENCE
4.5 GEO-SPATIAL PLATFORM
4.6 COOPERATIVE TRAFFIC INFORMATION
5 EXECUTION INFRASTRUCTURE

04-06-2010

Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

5.1 OVERVIEW ...cocuiiiiiiiiiiienieenieeieeeiee e
5.2 HIGH LEVEL COMPOSITE ARCHITECTURE
5.3 APPLICATION PROGRAMMING INTERFACE
6 COMMUNICATION INFRASTRUCTURE

6.1 OVERVIEW ...cccoeimiiiniiiiiinieenieereeniee e
6.2 DOMAIN PROCESS MODEL
6.3 HIGH LEVEL COMPOSITE ARCHITECTURE
6.4 MANAGEMENT INTERFACE
6.5 DATA TRANSMISSION INTERFACE
7 APPLICATIONS OVERVIEW

7.1 DANGEROUS GOODS

7.2 PARKING ZONEScccoovvrrrieeeeeeeennreneenn.
7.3 ACCESS CONTROLccceeruvrereeairieeeennnnnen.
7.4 COOPERATIVE TRAVELLER ASSISTANCE
7.5 ENHANCED DRIVER AWARENESS
7.6 INFORMATION APPLICATION
7.7 PRIORITY APPLICATION
7.8 SPEED PROFILE.......cccccuvvvirireeeeecnennrenennn.
7.9 COOPERATIVE TRAFFIC CONTROL
7.10 FLEXIBLE BUS LANE
7.11 NETWORK ASSESSMENT
7.12 ROUTING APPLICATION
7.13 STRATEGY APPLICATION
7.14 TRAFFIC CONTROL ASSESSMENT
8 LIST OF FIGURES.......ccervercnrercssanccsans

04-06-2010

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Executive Summary

This document has been created to give a complete overview of all building blocks in the
CVIS architecture in one place. It provides the integrated CVIS architecture specification to
set up cooperative systems based on the architecture specifications developed in the different
CVIS sub-projects.

CVIS has also provided a core input to COMeSafety architecture which recently has become
both an ISO and European ETSI standard. It is therefore clear that this deliverable, which has
been updated with the latest results from CVIS and standardisation, is highly relevant. The
results have already been transferred to a number of other projects. Large parts of this
document has since become ETSI and ISO standards. The basic architecture and concepts
innovated by CVIS and documented in this report, forms the basis for the global
understanding of what Cooperative Systems are. CVIS has also provided support to the
EU/US Task Force on Cooperative Systems based upon the architecture and results obtained
by CVIS.

The document describes how the future of cooperative systems can look like. The emphasis
on an integrated cooperative system consisting of applications, facilities, execution and
communication infrastructure together with legacy systems, makes it a highly innovative
design. For future deployment it is very important, that existing legacy systems can easily be
connected or integrated in a cooperative system.

This document includes:
A high level introduction to the CVIS architecture.

A description of the basic common functionalities, which the project calls "Facilities".
These are described in two parts:

e "Basic Facilities" comprise CVIS building blocks in the domain of "Information and
Communication Technology" (ICT),

e "Domain Facilities" comprise CVIS building blocks in the domain of "Intelligent
Transport Systems" (ITS).

D.CVIS.3.4 is based on and refers to other architecture specification documents developed in
CVIS, in particular the D.SP3.2 architecture specification documents of the sub-projects. It
constitutes a refinement of D.CVIS.3.3.

D.CVIS.3.3 is based on and refers to other architecture specification documents developed in
CVIS, in particular:

The D.CVIS.3.2 "High Level Architecture" (HLA) and the D.CVIS.3.1 "Reference
Architecture". These architecture specification documents focus on general architecture
principles applied in CVIS.

The D.SP.3.1 architecture specification documents. There is one D.SP.3.1 architecture
specification document for each of the CVIS sub-projects. These documents include
specifications of facilities and applications provided by the respective sub-projects
including their internal design.

To make this IP level deliverable self contained and to provide a complete "story" there are
some overlaps between D.CVIS.3.4 and the architecture specification documents outlined

04-06-2010 5 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

above. However, the emphasis of D.CVIS.3.4 is to provide the overall picture and to specify
how the different parts of the CVIS system are related and how these parts collaborate to fulfil
their obligations. Thus, it provides an integrated specification of deliverables provided in
different sub-projects.

The relationships and differences between the current set of architecture specification
documents are as follows:

The CVIS architecture principles, some overall architecture descriptions and some general
archetypical scenarios are described in the HLA and the reference architecture
specification documents. The content of these specification documents are mainly referred
to in this document, however, some principles and archetypical scenarios are repeated here
as to put specified features and scenarios in its context.

The D.SP.3.1 architecture specification documents focus on specifying facilities and
applications provided by the different CVIS sub-projects, including their internal design.
This specification uses these specification documents as baseline and focuses on how the
different parts are put together in the CVIS overall architecture and how these collaborate.
Thus, the focus of D.CVIS.3.3 and D.CVIS.3.4 is on the external interfaces of the different
facilities and applications as well as how they interoperate. For the internal design of these
facilities and applications we refer to the D.SP.3.1 documents.

Figure 1 below shows the set of developed and planned architecture specification documents
in CVIS and it depicts their relationships. (The bold red arrow in the figure points to this
document (D.CVIS.3.4)).

D.CVIS.2.2
UC & Syst. Req.

D.CVIS.2.1
Syst. Concept. Def

D.SP3.1 COMM D.SP3.2COMM
Arch & Spec. ' Arch & Spec. .

D.SP3.1 FOAM . D.SP3.2FOAM
Arch & Spec. . Arch & Spec.

Specification & Specification

D.SP3.1 CURB D.SP3.2CURB
Arch & Spec. Arch & Spec.

D.CVIS.3.1
Reference Arch.

Final updates after
field trials

Figure 1: Architecture specification documents and their relationships

All the above depicted documents are "stand-alone" documents and can be read independently
of the others. The content of the currently available architecture documents is briefly listed
below:

04-06-2010 6 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

"Architecture Specification Templates" is a family of documents providing guidelines and
templates for harmonised architecture specifications in the CVIS project.

"D.CVIS.3.1 "Reference Architecture" describes general principles of the CVIS
architecture

"D.CVIS.3.2 "High-Level Architecture" specifies the overall CVIS architecture.

"D.SP.3.2 "Final Architecture and System Specification" (one for each sub-project)
specifies the applications and facilities provided by each of the sub projects in detail by the
end of the CVIS project.

"D.3.4 "Final Architecture and System Specification" (this document) specifies the overall
CVIS architecture and provides specifications of the services provided by each of the
facilities and applications.

04-06-2010 7 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Abbreviations and definitions

Abbreviation Definition

AA Authentication and Authorization

2G Second generation cellular phone technology, e.g. GSM. For
ITS (ISO 21212)

3G Third generation cellular phone technology, e.g. UMTS. For

ITS (ISO 21213)

Access layer

Merged OSI layers land 2 as specified in the ITS station
reference architecture

AIDE Adaptive Integrated Driver-vehicle interfacE

API Application Programming Interface

Application Software bundle providing "End User Services"

AWT Abstract Windowing Toolkit

BL Bus Lane

Bundle OSGi term denoting a software service packaged into a JAR
file that can be deployed on the OSGi platform.

CAG Core Architecture Group (horizontal CVIS subproject
leading the technical work in the project)

CALM Communication Access for Land Mobiles - this is the work
title of a basic set of CEN/ISO communication standards for
cooperative ITS

CAN Controller Area Network

CDDF CALM Device Driver Framework

CF&F Cooperative Freight and Fleet applications. A CVIS sub-
project

CINT Cooperative Inter-Urban Applications. A CVIS sub-project

CME CALM Management Entity. Part of the CALM ITS station
and communication management. Term no more supported
in latest version of CALM standards.

COMM COMMunication & networking. A CVIS sub-project

COMO COoperative MOnitoring. A CVIS sub-project

CTA Co-operative Traveller Assistance

CURB Cooperative URban Applications. A CVIS sub-project

CVIS Cooperative Vehicle-Infrastructure Systems

04-06-2010 8 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Abbreviation Definition

DATEX 2 DATEX standard was developed for information exchange
between traffic management centres, traffic information
centres and service providers and constitutes the reference
for applications that have been developed in the last 10
years. The second generation DATEX 2 specification now
also pushes the door wide open for all actors in the traffic
and travel information sector.
(http://www.datex2.eu/)

DB Data Base

DDS Distributed Directory Service

DEPN DEPloyment eNablers

DG Dangerous Goods

DG preferred network Network where all road links are classified whether they can
be used for DG transports or not

DM Device Management

Driver Person conducting a vehicle

DSRC Dedicated Short Range Communications - ISO/CEN/ETSI
standards. Backscatter technology at 5.8 GHz.

EDA Enhanced Driver Awareness

EFCD Enhanced Floating Car Data (same as XFCD)), created on
occasion. Normally referring to data elaborated in the
COMO process "Computation of Local Traffic State"

ETA Estimated Time of Arrival

Facilities layer

Merged OSI layers 5, 6 and 7 as specified in the ITS station
reference architecture

Facility Software bundle providing services to be wused by
applications or other facilities
FCD Floating Car Data
FOAM Framework for Open Application Management. A CVIS
sub-project
FRAME Project name for European ITS framework architecture
Gateway 1. A device that allows to securely link the CAN network
to the IP network.
2. Functionality of the ITS station (ISO 21217) / device to
interconnect networks.
Ghost Driver Driver conducting a vehicle contrary to the prescribed
direction of traffic
04-06-2010 9 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Abbreviation Definition

GNSS Global Navigation Satellite System

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile communications, 2G version of
the cellular phone system.

GSP Geo-Spatial Platform

GST Global Systems for Telematics

GUI Graphical User Interface

HLA High Level Architecture

HMC Host management centre

HMI Human Machine Interface

ICT Information and Communication Technology

IdP Identity Provider

IME Interface Management Entity. Part of the CALM ITS station
and communication management. Term no more supported
in latest version of CALM standards.

IN-SAP SAP between access layer (I: Interface) and networking &
transport layer (N: networking) specified in ISO 21217.
Formerly referred to as C-SAP (ISO 21218).

P Integrated Project

IPv6 Internet Protocol version 6

IR Infra Red (ISO 21214)

ITS Intelligent Transport Systems

JAAS Java Authentication and Authorization Service

JVM Java Virtual Machine

LDM Local Dynamic Map. Standardized data base containing

geo-referenced data that is always available in vehicle and
road-side sub-systems.

Legacy system

1. Existing system to which the CVIS platform is attached.
These may be the existing system in a vehicle, e.g. the
CAN bus or XFCD generation, in a RSU, e.g. the loop
or traffic light controllers, or a centre, e.g. the
computation of the centre-wide traffic state already
existing in a TCC.

2. Communication equipment used in ITS, but according to
existent non-ITS standards.

04-06-2010

10 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Abbreviation Definition
LOS 1. Level Of Service
2. Line-of-sight (in communication)

LUTC Local Urban Traffic Control

M5 CALM Microwave medium at 5 GHz, based on IEEE
802.11 (p) (ISO 21215)

MI-SAP SAP between ITS station and communication management
(M: Management) and access layer (I: Interface) specified in
ISO 21217. Formerly referred to as M-SAP (ISO 21218).

NDM Network Dynamic Map

Networking & transport Merged OSI layers 3 and 4 as specified in the ITS station

layer reference architecture

NME Network Management Entity. Part of the CALM ITS station
and communication management. Term no more supported
in latest version of CALM standards.

OBU On Board Unit

OEM Original Equipment Manufacturer

OMA Open Mobile Alliance

OSGi Open Services Gateway initiative

OSI Open Systems Interconnection; ISO-OSI layered model for
communication protocols

PAP Policy Administration Point

PDA Personal Digital Assistant

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

POMA POsitioning and MApping. A CVIS sub-project

PSAP Public Safety Access Point

Q-API LDM Query API used by CVIS applications to get access to
COMO data

QoE Quality of Environment

QoS Quality of Service

RSSI Received Signal Strength Indicator (used for range
measurements)

RSU Road-Side Unit

RTIG Real Time Information Group

04-06-2010

11 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Abbreviation Definition

SAML Security Assertion Markup Language

SAP Service Access Point; functional interface used in the ISO-
OSI model

SC Secure Communication

SCE Secure Communication Engine

SOAP Simple Object Access Protocol

SP Sub-Project

SSO Single Sign-On

TLC Traffic Light Controller

T™C Traffic Message Channel

TMC/NSP Traffic management centre/ Navigation Service Provider

TPEG Transport Protocol Experts Group

Traveller A person planning or making a journey.

Tree information

Information provided by legacy systems concerning their
sensors and actors

UucC Use Case

UML Unified Modelling Language

UMTS Universal Mobile Telecommunications System. 3G version of the
cellular phone system.

URI Uniform Resource Identifier

UTC Universal Time Coordinated

V2I Vehicle to Infrastructure (communication)

VMS Virtual Message Sign

WiFi Wireless Fidelity

WP Work Package

XACML eXtensible Access Control Markup Language

XFCD eXtended Floating Car Data

04-06-2010

12 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Reference Documentation

Ref. Short name Document name Date

RDO1 | CVIS Reference Architecture | DEL_CVIS_3.1_Reference_archite | 2006-12-09
cture_v1.2

RDO02 | CVIS High Level Architecture | DEL_CVIS_3.2_High_Level_Archi | 2007-03-02
tecture_v1.0

RDO0O3 | D.CF&F.3.2 D.CF&F.3.2 Architecture and | 2010-03-31
system specifications v1

RDO04 | D.CINT.3.2 D.CINT.3.2 Architecture and | 2010-06-04
system specifications v1

RDO5 | D. COMM.3.2 D.COMM.3.2 Architecture and | 2010-06-07
system specifications v1

RDO06 | D.COMO.3.2 D.COMO.3.2 Architecture and | 2010-06-03
system specifications v2.0

RDO7 | D.CURB.3.2 D.CURB.3.2 Architecture and | 2010-06-04
system specifications v1

RDO8 | D.FOAM.3.2 D.FOAM.3.2 Architecture and | 2010-02-18
system specifications v1.2

RD09 | D.POMA.3.2 D.POMA.3.2 Architecture and | 2010-05-12
system specifications v1

04-06-2010 13 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

1 Introduction

D.CVIS.3.4 is the final IP level architecture deliverable of WP3 (see Figure 1). The rationale
of this deliverable is to provide a coherent specification of the CVIS architecture. It provides
the integrated CVIS architecture specification based on the architecture specifications
developed in the different CVIS sub-projects.

Note that the final deployment architecture might be slightly different from the one developed
and presented in CVIS. In particular, wherever safety and security aspects are concerned, e.g.
road-side traffic control systems, traffic management centres, system responsibilities must be
unambiguous. This will probably lead to closed sub-systems with interfaces that are
physically different from the ones used in the CVIS project but in any case will make
available the same data to potential applications.

All CVIS use cases and requirements can be found in D.CVIS.2.3 "Final System
Requirements". The requirements will be used in the validation process but will not be
included in this document in order to avoid overlap between deliverables and avoid possible
conflicts between different versions of requirement sets.

1.1 Intended audience

The intended audience of this document are all stakeholders interested in the CVIS
architecture specifications, in particular those who want to understand the overall CVIS
architecture. Five main types of audiences can be distinguished:

1. System architects needing to understand their context and the overall CVIS system
architecture.

System developers implementing various cooperative CVIS based functions.
The European Commission who is supporting the CVIS project.

Correlated projects in the area of cooperative systems.

ook v

External stakeholders who would like to understand the CVIS system architecture.
1.2 Document structure

This document is divided into three main parts:

Part I introduces the CVIS overall architecture, the main sub-systems and components,
main information flows and domain concepts.

Part II provides specification of the CVIS facilities and infrastructures including the basic
facilities, the domain facilities the communication infrastructure and the execution
infrastructure.

Part IIT presents specifications of the CVIS applications.

04-06-2010 14 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

PART | CVIS overall architecture

04-06-2010 15 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

2 CVIS overview

2.1 Cooperative systems - setting the scene

CVIS developments are designed for a new way of cooperation and communication. It will
create a break-through of today's ITS development and replace today's patterns of ITS
systems. In the cooperative vision, vehicles, even all mobile traffic participants, road-side
infrastructure and centre systems are no longer seen in a rather hierarchical relationship
concerning communication and information processing. Instead all participants are seen as
"nodes" in a common "network". In addition to this conceptual change, the physical wireless
communication enhancements enables the "nodes" to be always connected to common
networks and to communicate rather freely with each other according to their needs. This is
often referred to as being the "always on" type of communications.

any clients (e.g. vehicles,
infrastructure and centres)
can connect to the CVIS.net

jam,...

controllers on section ...,)
please do ... My attributes are...
_— You may use
© o
EICS O the bus lane...
L]
- = = | will change in...
there is an _
accident... I

o) o O

the travel time
on next link is...

| have experienced a

| want to go to...

| measure.
| display ...

I want to
park...

g o

‘ Your best Route is...
A parking lot has been booked for you in ...

You can
download
services...

We recommend for the specific
vehicles going to ... to go via ...
The oncoming traffic situation is...

Figure 2: CVIS system overview

This new view of the relationships between systems provides a mighty capability to design
various known ITS applications in a very different and more efficient manner and also opens
up the door to the development of unprecedented new applications.

However the new view includes the challenge that the system remains manageable. Safety,
security, privacy, stability of the system and its communication links must be achieved. The
applications' needed changes of the over time must be managed and finally all technology
must be usable in a way to respect the organisational structures of today and the future, as
well as business needs.

CVIS contributes to this, providing:
¢ A communication solution, which is based on CALM specifications including IPv6.

¢ A middleware layer for managing the lifecycle and/or the deployment of application

04-06-2010 16 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

software.

e A set of basic functional components, called "Facilities". These are split into two groups:

o "Basic Facilities", supporting access of applications to necessary
communication functions and to a security framework.

o "Domain Facilities", supporting applications with a core ITS related tool set
e.g. positioning, location referencing and getting traffic status information.

® A set of demonstration applications in urban, inter urban and in freight and fleet areas.
CVIS Top level architecture

The CVIS top level architecture is shown in Figure 3. The systems in the vehicle, at the road-
side and in the central systems consist of:

¢ A host computer in the vehicle, at the road-side and in the central systems running
cooperative CVIS applications. It encompasses a Java based middleware providing
ITS services and facilities for easy development and life-cycle management of ITS
applications.

¢ A mobile router in the vehicle and a similar access router at the road-side providing
seamless communication facilities to the ITS applications based on the CALM
standard.

e A gateway to the existing or legacy systems either at the road-side or in the vehicle.

¢ A border router at the road-side and in the central systems connecting to the Internet.

Also refer to chapter 2.2 on page 21 for further details.

Roadside System Central System

—— (ANTH
— \ ‘\ANTENNA

s, el
RSl

SERVICE CENTRE

n
[}
o e e o

Vehicle System

AUTHORITY DATABASES

W
!

MOBILE
ROUTER

vericLe fl vewicLe
HoST cateway b gl 20

)
- L=

CONTROL SENTRE

CENTRAL | BORDER

]
o e e o

o
L

[
o el e o

Figure 3: CVIS tope level architecture

04-06-2010 17 Version 1.0

ﬁ CVI S CVIS Architecture and
System Specifications

In CVIS, cooperativeness is achieved through the basic set of CALM ITS communication
standards presented in Figure 5, which enable seamless communications to cooperative
applications as illustrated in Figure 4.

Figure 4: Continuous communication as a basis for cooperative systems

04-06-2010 18 Version 1.0

«'CVIS

CVIS Architecture and
System Specifications

green: implemented in CVIS

24978
ITS safety and
emergency
notification

11776
Lawfull intercept

11769
Data retention for law
enforcement

1318x
Security

29281
Legacy Port
Manager,
15628 Kernel
Emulator

24102
FAST service
provision,
Legacy Systems

24101
Application
management

15662
TICS message
management
information

Facilities

21210
IP networking

29281 Non-IP
networking

Networking &

Transport

29283
|IEEE 802.20

29282
Satellites

29281
Non-IP
DSRC legacy
systems

25113
WBB
Existing Systems

25111
WBB
General support

21216
CALM MM

21215
CALM M5

21214
CALM IR

EDGE, GPRS

Public broadcast
reception

Access
Technologies

21218
Lower Layer SAPs

24102

24101 3 _—
ettt ERESERET Station and communication
PP 9 management

Applications Management

21217

ITS Architecture

Figure 5: CALM standards

04-06-2010 19

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

CVIS system context

The CVIS operates with existing centres, road-side and vehicle systems. Figure 6 illustrates
the relation between CVIS and existing systems:

Through vehicle and road-side gateways CVIS components interface with existing systems. In
addition CVIS systems use the global IPv6 network. Consequently this is a further way to
communicate with other systems, e.g. existing centres.

O
driver |
K CVIS Host
Roadside @ HMI
Existing Syste Roadside
Gateway
Traffic g] g
Vehicle
Managemen E—— -
anag IPv6 Existing Systegrg
Existing Systems Vehicle
Gateway
Host
Management
Centre CVIS
existing
Traffic manager Scz':t'f:
()
N

SW supplier Service provider
Figure 6: CVIS system context
Drivers or travellers will see CVIS through existing HMIs of vehicles, mobile devices or

road-side actuator displays or applications. In addition there can be a CVIS system with own
HMI towards users.

04-06-2010 20 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

2.2 CVIS main sub-systems

A CVIS system consists of four main sub-systems as shown in Figure 7:

The central sub-system; which is the back-end infrastructure that a service provider uses
to serve and operate applications and/or facilities on vehicle or road-side sub-systems.
Control centres, service centres and authority databases are typical examples of central
sub-system constituents.

The handheld sub-system; which provide access to the CVIS system through handheld
devices such as PDAs and mobile phones. The handheld sub-system enables services such
as pedestrian safety and remote management of other CVIS sub-systems. Note that
handheld was not implemented and tested since this function is explicitly excluded from
the CVIS scope.

The vehicle sub-system; which is the vehicle "on board" part of CVIS system. It includes
the vehicle sensors and actuators, communication infrastructures for internal
communication, e.g. sensor and actuator communication, and equipment for external
communication to enable car to car, car to central, car to handheld and car to road-side
communication, e.g. antennas, equipment for infrared etc.

The road-side sub-system; which is the infrastructure needed to operate at a road-side
unit. It can for example comprise components such as traffic lights, cameras, "Variable
Message Signs" (VMS), etc.

Central Subsystem Handheld Subsystem

VA
=) ih & = = |sonie
way way Host Services
Authority ﬁ *: Contro.
Databases Contre <:| CALM
Network

Gate- Centra Border
way Host Router

Service

g~
S| Central Gate-
] Host way
=i

Centre \k

External communication
CALM
IPv6

Internet
Infrared, M5, G3, GSM

.;

Vehicle Subsystem Roadside Subsystem

Vehicle
Gateway

Vehicle

A
Host

Ctrl Ctrl

Roadside Access | |Roadside

SENS Router Host

'''''

Figure 7: CVIS sub-system overview

04-06-2010 21 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Different networks and communication protocols are used to enable communication between
different sub-systems as indicated with the cloud in Figure 7. These four sub-systems and the
communication infrastructure for communication within sub-systems and between sub-
systems are described further in the D.CVIS.3.2 "Reference Architecture" document.

Host, router and gateway

All sub-systems include hosts, routers and gateways as conceptual components (ISO 21217),
and in the project also as physical components:

A CVIS host provides the execution environment where the CVIS applications and
facilities are hosted (deployed and executed). The CVIS execution environment is based on
Java and OSGi. CVIS hosts are elaborated further in the next sub-section. Applications and
facilities are elaborated further in part II and part III of this document.

A CVIS router provides access to the communication infrastructure enabling connections
between different CVIS hosts. There are two types of routers: the "access router" to
provide wireless short-range communication and the "border router" that connects the sub-
system with the Internet, e.g. cable, GPRS, UMTS.

A CVIS gateway is a protocol converter and firewall between the open and the proprietary
part of a sub-system. Its purpose is to protect the technical infrastructure of the existing
sub-system (vehicle, road-side or central). In a vehicle or road-side sub-system a
proprietary network connects embedded controllers in the sub-system. The embedded
controllers are accessible from the hosts through the gateway.

Note that all of the functionality could be implemented also in a single physical unit. A
specific splitting is given by a specific implementation.

This split of sub-systems into the functional entities hosts, routers and gateways is made to
separate concerns and responsibilities (the responsibilities are as described in the bullet list
above). Furthermore, this split provides flexibility when configuring a sub-system since you
may have several physically available hosts, routers and gateways in one sub-system. For
instance a sub-system can have three hosts, one access router and two gateways. A gateway is
configured to set restrictions of the access to sub-system internals, e.g. sensors and actuators.
A local area network (Ethernet) connects the router, the host(s) and the gateway. The router
provides communication between sub-systems.

As the CVIS host is most significant for applications developments, the following chapter is
treating this component more in detail. Routers and gateways can be understood as parts of
the underlying communication infrastructure, which can be used by applications residing in a
host. In fact the basic facilities, e.g. connection manager and distributed directory service,
provide router and gateway functions to applications on the hosts.

2.3 CVIS hosts

As elaborated in D.CVIS.3.2 "High level Architecture" a CVIS based system can be regarded
as a peer to peer network of CVIS hosts, which are all connected on basis of public IPv6 as
shown in Figure 8. IPv6 provides support for mobile hosts in an IP network. However when
IPv6 is not available it will still be possible for connections to the network to be achieved
through any available access networks e.g. 3G, Wireless LAN, IPv4 service providers.

04-06-2010 22 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

CVIS Host

CVIS Host

public IPv6 network

CVIS Host

Figure 8: Network of CVIS hosts

CVIS Host

There are different categories of hosts such as central hosts, e.g. control centre and service
centre, road-side hosts, vehicle hosts and handheld hosts as illustrated in Figure 9.

Central
Internals

C_Gw

g]

Control
Centre

Central Host

Service Centre

CVIS Host

JAY

g]

Traffic
Management
Centre

Content Centre

gl

Vehicle Host

Road-Side Host

R_GW
Roadside Vehicle
Sensors&Actuators Sensors&Actuators

Figure 9: CVIS concept; categories of hosts

gl

Handheld Host

V_GW HH_GW

Handheld
Internals

CVIS hosts can adopt various roles. An important aspect of CVIS hosts is that they can play
both the role of consumer and supplier, i.e., they can supply or consume information / services
(even at the same time in the same host). This is a consequence of the peer to peer architecture
principle applied in CVIS. This is further elaborated in the D.CVIS.3.2 "High Level
Architecture" document.

2.4 Intermediate architecture

While the described concept and architecture of cooperative systems will function in the most
optimal way not until all vehicles and road-side units are equipped and are interoperable, an
intermediate world needs to be considered. Full penetration of cooperative systems will not be
achieved over night but sustainable intermediate model needs to be ensured.

It is obvious that if another vehicle or road-side unit is not equipped with cooperative system
hosts and routers, direct peer-to-peer communication and cooperation will not be possible.

04-06-2010

23

Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

Nevertheless, some indirect cooperation could be achieved through already existing systems.

One example is "Traffic Message Channel" (TMC). If one CVIS-equipped vehicle detects e.g.
an accident, slippery road conditions or traffic jams, this information could be sent to a traffic
management centre which through TMC could inform other "non-cooperative" vehicles.

Another example of the intermediate world is to use "Variable Message Signs" (VMS) for
informing the rest of the traffic about information provided by CVIS-equipped vehicles.

Third example is that in order to achieve better understanding of the traffic situation on a
certain stretch of road, road sensors such as loops will still be needed for considerable time.
The road loop data will be beneficial for cooperative vehicles as well as they will be able to
receive information on road status in situations where not enough cooperative vehicles are
travelling on these roads.

Last but not least, please observe that VMS and road sensors are already part of the CVIS
architecture see Figure 7. Hence, even though the intermediate architecture has not been
explicitly explained, it has already been considered.

2.5 Layered architecture

The overall CVIS architecture is separated into a set of layers. The layered architecture is
shown in Figure 10. A main principle of a layered architecture is that a particular layer only
communicates with immediate above or below layers. For example, Figure 10 specifies that
the communication infrastructure is hidden from the application layer by the middleware.

Applications
Dangerous - FIeX|bIe
Goods Enhanced Bus Lane

Driver Prlorlty

Coop. : .
Parking Wa’ Speed Traffic Application
Zones Information Profile N Control Layer

Coop.
Access Travelers Coop Traffic Control
Control - Assistance Monitoring Assessment
Basic Facilities Coop. Domain Facllltles -
Traffic BlIImg& Facilities
De 2 Broadcast - nformatiol @ Paymen Nallve
. n Reference |nterface

PIOV/ZConnection F\{:) e:c;gli?j/e Position& Map
Manager - Tree ap matchm rowsw

Execution infrastructure (OSGi based)

Middleware
Layer

Native / Real-time

applications Platform
Core
Communication Infrastructure Functions
(including OS and Hardware (sensors, actuators etc)) Layer

Figure 10: CVIS layered architecture

Note that in Figure 10 the term "layer" does not imply the ISO-OSI layered model for
communication protocols! In addition to the CVIS layer architecture, this report also uses the
ITS station reference architecture (ISO 21217) which is based on the ISO-OSI layered model
as presented in Figure 99.

04-06-2010 24 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

2.5.1 Application layer

The top layer is denoted the applications layer. It contains the set of applications. An
application provides end user services. Examples of end users are drivers and traffic
managers. The applications are software bundles that can be deployed and executed on the
OSGi based execution infrastructure. Software bundles are presented in section 5. In the CVIS
peer to peer network, applications can discover and interact with each other. During their
lifecycle, applications access the basic and domain facilities in order to operate, interoperate
and provide end user services. The applications are executed in the OSGi run time
environment as shown in Figure 10. The set of CVIS applications (dangerous goods,
enhanced driver awareness, priority etc) are presented in part III of this document. Most of
CVIS applications are depicted as green hexagons.

2.5.2 Middleware layer

The middleware layer consists of two sub-layers. The facilities layer and the OSGi based
execution infrastructure layer. The facilities layer contains a set of facilities. Like
applications, facilities are software bundles that can be deployed and executed on the OSGi
based execution infrastructure. However, the facilities provide services to support operation
and interoperations of applications and other facilities. In addition, facilities can provide
common domain services used by different applications and facilities. There are two types of
facilities:

Basic facilities; which provide core services to support liable operation and interoperation
of applications and facilities. Examples of basic facilities are: lifecycle management,
"Distributed Discovery Service" (DDS) and security management.

Domain facilities; which provide common domain services such as payment and billing,
positioning, map related services etc. In principle an application can evolve into a domain
facility. If an application provides an end user service that also is interesting to be used by
other applications and facilities, this service is a candidate for generalization to become a
domain facility. The CVIS routing application is already identified as a candidate to
become a domain facility.

The full set of facilities provided by CVIS is described in part II of this document.
The OSGi based execution infrastructure layer consists of three main parts:

1. Java runtime environment; which provides the execution environment for the OSGi
framework.

2. OSGi framework; which defines an open framework that enables software
installation, bundle lifecycle management, dynamic code sharing between bundles,
service lookup, security, resource management, and functions necessary for remote
administration.

3. Standard OSG:i services; which add to the basic OSGi framework functionality a set
of basic utility services which are considered essential for most of the OSGi bundles.
These standard services are listed the D. FOAM.3.2 document.

04-06-2010 25 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

2.5.3 Platform core functions layer

The main part of the platform core functions layer is the communication infrastructure layer
which includes the communication infrastructure, operating system, routers, gateways and
hardware (sensors, actuators, antennas etc). Native applications can access the communication
infrastructure and hardware directly, not going via the middleware layer. Development of
native applications can be required for performance reasons. Native applications should
preferably provide OSGi based application programming interfaces, either at the domain
facility level or at the application level. This is necessary to be integrated fully into the CVIS
environment being a real CVIS citizen, taking part in the CVIS level interoperation, including
peer to peer communication, service discovery etc.

2.6 CVIS high level component architecture

In the previous section we provided an overview of CVIS sub-systems. In this section we look
into some more details specifying the content of CVIS hosts and elaborate further on the main
components of the sub-systems identified in Figure 7.

A CVIS host provides an OSGi based execution environment for deployment of applications
and facilities. Figure 11 depicts an example of a typical CVIS host configuration (other
variations are also possible but not shown here). Two applications (al, a2) are shown, which
access different sets of facilities. The host has ports to the gateway and to a router. The
gateway represents various interface mechanisms to existing legacy systems. Other facilities
may also interact with the gateway to access data or execute operations, e.g. to provide
information for the execution of actuators which is managed behind the gateway on legacy
system side. Routers are used for communication with other CVIS hosts. There may be
several hosts in a local network attached to one router.

exampleHost:CVISHost 3]

a2:App 2 |

@
IHMCA IComm

‘HMCA :Connection
Manager

:Facilities

pRouter_aE rgRouter_b

Figure 11: CVIS host

04-06-2010 26 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Figure 12 shows a typical configuration of the vehicle sub-system. A vehicle sub-system can
contain several vehicle hosts. A vehicle host is a specialization of a CVIS host as shown in
Figure 9. In the configuration of Figure 12 there are three vehicle hosts; vlhl, vlh2 and v1h3.
The figure shows the composites of v1hl, while vlh2 and v1h3 are shown in collapsed mode.
One rationale for having several hosts in a vehicle sub-system is that these may be set up with
different functionality and access rights. For instance a host for executing entertainment
applications and Internet browsers should have different access rights and should not be
connected to the vehicle gateway. Similarly there may be several routers in a vehicle sub-
system. The configuration of Figure 12 has two routers; rl and r2. The routers provide
services for communication with other CVIS hosts.

:VehicleSubsystem 2

vih1:VehicleHost 2 |

‘ al:App = | ‘ ‘ a2:Apps |

IVehicleTree

pGateway g]
:Vehicle :Connection
Tree Manager
:Facilities
:Gateway £ | O
Router
I IGateway P
vih2:Vehicle
8 | Host
:VehicleSensors IManagement IDataTrans
&Actuators r
v1h3:Vehicle
Host

L
pCommunicationChannel

Figure 12: CVIS vehicle

04-06-2010 27 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The road-side sub-system has a similar architecture as a vehicle sub-system consisting of
hosts routers and gateways for accessing the road-side equipment, e.g., sensors, actuators,
traffic light etc. Also central sub-systems typically have the same principal architecture. This
is illustrated in Figure 13.

Vehiclesubsystem £] :RoadSideSubsystem
vih1:Vehicles | g] r1:RoadsideHost 3 |
Host
:Gat :RSUSensors&A
e T
IGat
2] e By P(RoadSideTra R oD
:VehicleSensors 5 ILDM? IDDS[IRoadSide r‘ee IHMC/T\ IComm ?
ay OF© . Y Facilities £]
]1[|Gateway
\
o
IManagementrD/ |DataTrans
R1:Routers |

controlCenter:CentralSubsystem 2 trafficManagementCenter:CentralSubsystems |

:Internal :Internal

System System
ch:Central .
aoway T

Figure 13: High level CVIS sub-system architectures

2.7 Design decisions and constraints

2.7.1 Information level interoperability

To enable interoperation between vehicles, road-side units and central units the information
that are exchanged need to be understood and interpreted correctly by information consumers.
Thus, unambiguous definitions of properties, types and type units of the exchanged
information are important. For instance exchanging speed information of a vehicle, the type,
e.g. REAL, and unit, e.g. meter per second, need to be agreed upon by the information
producer and consumer.

There have been several efforts of standardizing such kind of ITS domain data, and there are
several standards available such as TMC, TPEG and DATEX 2. In CVIS it is important that
cooperative systems' applications use these standards as much as possible, whenever the
application context allows this. However, in dedicated common functions called the CVIS
"Basic Facilities" and the CVIS "Domain Facilities" as well as for broadcasts on dedicated
channels, certainly a harmonised, common information modelling is necessary to achieve
interoperability.

In all circumstances it is important that every information supplier provides an unambiguous
specification of exchanged data. Thus, each application and facility specified in CVIS needs
to include an unambiguous specification of its domain information model. The domain
information model views for the different facilities and applications are included in part II and

04-06-2010 28 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

part III of this document.

For a real world deployment of a cooperative system like CVIS develops, it is suggested to
foresee an organisational and technical process that supports the sharing of information on
data models inside applications. For example this could be achieved by an "Open Cooperative
Systems Platform Forum". Such a forum can manage the information models, e.g. supported
by a data registry mechanism.

2.7.2 Using the local dynamic map for accessing tree information

Tree information, i.e. information provided by legacy systems concerning their sensors and
actors, may be accessed using the "Local Dynamic Map" (LDM). LDM enables aggregated
and more sophisticated data that can be useful for a set of CVIS applications. The LDM is
connected to a DataFusion component. The DataFusion is connected to the gateway
accessing data available in the road-side or vehicle tree. This is depicted in Figure 14

exampleHost:CVISHost 2]

al:App 2 | a2:App = |

@ O
ILDM IDDS| IPositioning
; 2]

pGateway

}"ﬁ\ :LDM

[

:Data
pRouter_a(%Router_b

Fusion :Facilities
Figure 14: Access tree data using LDM

In this case the general tree component as specified in Figure 11 consists of the LDM and the
DataFusion component. The LDM is a central component in the "Cooperative Traffic
Information" facility as described in section 4.6.

04-06-2010 29 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

2.7.3 Deployment architecture road-side

As far as traffic control and management systems are concerned, the future deployment
architecture will likely look slightly different from the CVIS test site architecture. This is
illustrated in Figure 15 below. The main difference between those two is that in the future all
applications are foreseen to run in one environment (both CVIS and non CVIS applications),
and the overall system will have the overall responsibility. In this case the sub-system
foresees several application areas for different types of applications. The safety related
applications (that reside in the lower green application area) and all the potential other
applications (green box above) are connected to the central data base LDM which contains a
geo-referenced, standardized set of data including traffic control states and aggregated
detector data that is of common interest for various applications and services and is therefore
available for every authorized application through standardized "Application Programming
Interfaces" (APIs). Because of security issues there will also not be a direct (physical /
logical) connection between the communication units or applications of the open application
area and the local traffic control system. Direct control of road-side actuators is generally not
allowed.

open cooperative applications

common

LDM cooperative technology

communication

cooperative applications

local traffic control

actuation sensors

Figure 15: Co-operative road-side architecture for deployment stage

04-06-2010 30 Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

PART Il CVIS facilities and
infrastructure

04-06-2010 31 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

3 Basic facilities

This section describes the set of basic facilities provided in CVIS. The basic facilities shall be
available in any CVIS host. They feature common execution management and communication
functionalities in the field of "Information and Communication Technology" (ICT) - whereas
domain facilities in the next main chapter are common functionalities in the field of ITS.

The following basic facilities are provided:

OSGi framework and lifecycle management; which provide lifecycle management of
applications and facilities.

Distributed discovery service; which facilitates looking up applications and facilities
deployed in the CVIS infrastructure.

Security; which facilitate security services such as authorization and authentication and
secure communication.

Identity' (as part of the security framework); which performs the identity management
to allow identification with authenticated pseudonyms.

Broadcast''; which facilitate broadcasting of data and services for subscribing (to be
notified of particular events).

Connection manager; which provide services for setting up communication channels
between CVIS hosts.

Human machine interface; which provides a standard set of graphical elements for
providing graphical user interfaces to end users.

Local device tree; which facilitates access to tree data on a CVIS sub-system, e.g. a
vehicle tree, a road-side tree, etc. It also facilitates remote management and configuration
of tree data.

Each of the basic facilities is presented in the next sub-sections applying the following
viewpoints:

Overview''; which provides an overall introduction to the facility.

Application programming interface (API); which describes the API accessible for the

users of the facility (typically applications, but a facility may also be used by other
facilities).

Information model; which specifies the facility from an information perspective
describing information objects of the facility domain.
Interaction model; which specifies main usage scenarios associated with the facility.

High level composite architecture; which specifies the main components constituting the
facility (this perspective is optional, since some facilities consists of only one main
component).

This document (D.CVIS.3.4) includes specifications of interest for the users of the facilities.
Further details as well as the internal design are specified in the corresponding D.SP.3.2
documents.

04-06-2010 32 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

3.1 OSGi framework & lifecycle management

The OSGi framework provides a comprehensive set of functions to provide and deploy
software bundles. This allows the addition, change or removal of applications software or
facility software during the runtime of the system. CVIS will implement JAVA/OSGi in such
a way, that these runtime system changes can be done from remote through the "Host
Management Centre" (HMC) and the corresponding HMC on the associated hosts.

A more detailed introduction into JAVA/OSGi and the application run time environment of
CVIS is given in chapter 6 of D.FOAM.3.2.

JAVA/OSGit specifications are available on www.osgi.org. e.g.

= OSGi service Platform - Core Specification, Release 4, Version 4.1, the OSGi
Alliance, April 2007

= OSGi service Platform - service Compendium, Release 4, Version 4.1, the OSGi
Alliance, April 2007

3.1.1 Overview

The functionality of the OSGi framework is divided in the following layers [Core]:

1. Security layer
2. Module layer
3. Lifecycle layer
4.

Service layer
5. Actual services

This layering is described in more detail in section 5. Here we introduce the layers that are of
special relevance for the concepts in CVIS:

The security layer is based on Java 2 security but adds a number of constraints and fills in
some of the blanks that standard Java leaves open. It defines a secure packaging format as
well as the runtime interaction with the Java 2 security layer.

The lifecycle layer provides a lifecycle API to bundles. This API provides a runtime model
for bundles. It defines how bundles are started and stopped as well as how bundles are
installed, updated and uninstalled. Additionally, it provides a comprehensive event API to
allow a management bundle to control the operations of the service platform. The lifecycle
layer requires the module layer but the security layer is optional.

The service layer provides a dynamic, concise and consistent programming model for Java
bundle developers, simplifying the development and deployment of service bundles by de-
coupling the service's specification (Java interface) from its implementations. This model
allows bundle developers to bind to services only using their interface specifications. The
selection of a specific implementation, optimized for a specific need or from a specific
vendor, can thus be deferred to run-time.

04-06-2010 33 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

Deployment and provisioning
Related to the lifecycle management is the deployment and provisioning features:

Deployment should be interpreted as the process of making a service application available at
an HMC. This includes the packaging and transport of the application and all its components
from the service centre to the HMC.

Provisioning should be interpreted as the process of enabling a service application for use on
a CVIS unit. This includes packaging, transport of the application and all of its components
and activation of the application on the CVIS unit.

In CVIS the host platform will be equipped with the management agent. The management
agent will support the lifecycle management.

Software

Supplier(s)

Service Center

Applications and Facilities

Deployment
Deployment API

Management Agent Provisioning API

Provisioning —— %

Management

/ Centre

Well defined provisioning
protocol from GST based on

v

CVIS
Entiry

OMA-DM A Service Application is
CVIS host provisioned to the CVIS host
FOAM API via the host Management
Management Centre and the Management
Agent Agent in the host

Figure 16: System overview for deployment and provisioning

Figure 16 illustrates the two different steps "deployment" and "provisioning".

e New software applications (A1, ...) are issued by suppliers (or by service centres acting as
software supplier) and need to be "deployed" to the HMC entities.

All CVIS hosts belong to exactly one HMC (myHMC). There may be numerous HMCs run
by different organisations.

e A "Management Agent" (MA) on a host contains the necessary functionality for managing
the download of new applications. This "provisioning" is based on an OMA-DM protocol
which has already been demonstrated in the GST project.

After the provisioning is concluded applications (A1, A2) can run on the host. In the example
figure they communicate with the service centre.

04-06-2010 34 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

3.1.2 Application programming interface

For the actions of deployment and provisioning, CVIS defines the following Java OSGi APIs:

cd DeploymentWebService /
«web service» Host
Software Supplier usss DeploymentWS provides| Nhr;ﬁr:m

+ deploy(DeploymentPackage) : boolean
+ remove(SenviceApplication) : void

Figure 17: Deployment API

cd ProvisioningWebService /
: Host
«web senvice» Management
ProvisioningWs

provides| Centre

+ subscribe(String, String) : boolean
+ unsubscribe(String, String) : void
+ isSubscribed(String, String) : boolean

Figure 18: Provisioning API

cd ManagementAgentinterface /
«0gyi service»
Service ManagementAgentinterface
Application uses provides thgerr‘rtem
+ sibgribe(Sting) : boolean Age
+ unsubscribe(String) : void

+ getAvailableSenviceApplications) : List

Figure 19: Provisioning API of the CVIS host

In principle here all the OSGi functionality would be right to be quoted as "the" API. As this
is not the intention of this document, the following figure is just an example illustrating the
lifecycle layer.

04-06-2010 35 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

class Lits Cycls Layar

ainterfaces
Bundledctivator

ainterfaces
BuadleComtext

+ start{undleContext) : unid
+ stopBuntlecontext) uold

getPmpety(Sting) © St
getBundle) : Bundle

imstaltBundle (Sting) - Aumdie

Eventiisterer|
winterfaces
Bundlelistener

+ bundle Changed Burdle Event) : woid

installBundle(Sting, iput S : Sundle

getdundte forg) : Bundle

getBundles) Bundlel}

s ServicelistenerSanicet isterer, Stiag) : void

o ServicelistenetSenivedisterer) | woid

remoue Sericeistener(Senicel istener) : oid

sudBundlelisterenBundledistener) | wid

renoueSumdled istererBundledisterer) : uid

audFrameworklistenerFrane wodkiistered) ; wid

reno e e worid istenenFrane worklisteaer) © vaid

rewisterServive (Singl], Olyect, Dictiorary) : SeniceRegistation

registerSenice (Sting, Olject, Dictinnary) : SeniceRegistation
iny, Sling) ; Send

. Staag) - 7

el

gt Service (Service Refermce) | Olyect
urgetSenine (SeniceReferane) « boolean
getDataFile (Sting) : File
oreateFittenSting) : Filter

e

B sinterfaces

. Bundile

+ UMNINSTALLED: int= 000000001 freadOnly}
+ INSTALLED: int=0x00000002 {readOnl

+ RESOLVED: int=0x00000004 freadQnly}

+ STARTING: int= 000000008 {readOnk
+
&

ETOPPING: int= 000000010 freadOnhy}
ACTIVE: int= 000000020 {readOnly}

getState() - int
start() : void
staa() ; void
upilate) : woid
ol atehout Strean) : woid
uninstall() : void
getHeaders() : Dictianary
getBundledl() loag
gettocation]) : Sing

; Servoes] :
getSenicesh e () Senive Afermmcal]
RasPemission (Oieot) - hoclean
getResoume (Stiag) ; LRL
getteadems(Sting) : Dictionary
et SymholicAawel) ; Sring
load Dlasssidag) - Class
getResnumesSing) | Enunerstion
getEntryPaths(Sting) | Enumerstion
et Sdag) URL
et sstiodified () : torg
find Ereies(String. Sting. hoolesn) : Enumemtion

bundie]]

e

-bundle

Eventiisterer
«interfaces
Frameworklisiensr

+ dmewoHEvertFrERe wokE veat) | vold

EvemtCiyect EventOlyect
wintertacen BundleEvent FramesworkEvent
SheharblsBuauichisEnes ~ serialVersionUID: lang = 4080B40BE597 17560121 freadOnhy} ~ serialVersionUID: leng = 207051004521261705L freadOniy}
- bundie: Bundle - bundie; Bundle
- type int thiowable: Throwable
+ INSTALLED: int= 0400000001 readOnty} - type: int
+ STARTED: int= DD0NDOO0Z freanCinky] + STARTED: int= 0400000001 [readCinky}
+ ETOFFED. int= CDO0DD0S fresdOn iy} + ERROR. ink= 000000002 {resdOniy}
+ UPDATED: int= DD00D000E freanCink] + PACKAGES_REFRESHED: Int= 0»00000004 {r2ad0nly]
+ UNINSTALLED: int= Dx00000010 freadiiniy] + STARTLEVEL CHANGED: int= 0x00000008 freadOnlv}
+ FESOLVED int= 0OOONOMD frsadiink + WARNING. int= 000000010 {readOnly}
+ UNRESOLVED: int= CiDDODD40 Jre3d0n i} + INFO: ink= 000000020 readCiniyl
+ STARTING: int= 000000020 {read0Only}
+ ETOFFING: int=0nDOO0O100 freadOnky + FramewokEvenifint, Objact)
+ FramewomEvent(int, Bundle, Throwable)
+ BundlsEventint, Bundle) + gelThromatle() : Thiowable
+ getBundle] : Bundle + getBundle() : Bundle
+ getTypen: int + gelTypen it

Figure 20: OSGi lifecycle API

04-06-2010

36

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

3.1.3 Interaction model

To illustrate what the term "lifecycle" means, the state diagram of a service bundle is shown
in Figure 21. As can be seen, during its lifecycle the bundle passes through 6 states:

str Bundle 7

refrazh, update

install

af_ : INSTALLED
STARTING
refrezh, update
resolve

start

ACTIVE
RESOLVED
uninstall
\ stop

uninstall STOPPING
UNINSTALLED

Figure 21: Lifecycle states of JAVA OSGi bundles

3.2 Distributed directory service

This sub-section is based on the "Distributed Directory Service" (DDS) section of the
D.FOAM.3.2 specification document. In this document (the D.CVIS.3.4) the focus is on the
external interface of the DDS and how these services are accomplished through interactions
between different parts of the CVIS system. For discussions of the internal architecture of the
DDS we refer to the D.FOAM.3.2 specification document.

3.2.1 Overview

DDS provides mechanisms for looking up deployed applications and facilities in a CVIS
distributed peer to peer network, enabling ad hoc communication between CVIS sub-systems
and applications. The DDS basically provides two discovery mechanisms:

A CVIS peer can look up another peer using some search criteria. The peers' unique
identification can be used as the search criteria to look up a specific peer.

A CVIS peer can subscribe to and be notified when a particular service provided by a
facility or an application is within reach. To accomplish this, the DDS provides facilities
for broadcasting service announcements and to subscribe announcements of particular
services. Thus, if a broadcasted service announcement reaches a particular CVIS peer that
has subscribed to this particular service, the peer gets notified and they can start to interact.

04-06-2010 37 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Context

The CVIS system will consist of many applications and facilities (implemented as OSGi
bundles) running on different CVIS hosts. A CVIS host can be a mobile unit (in-vehicle or
nomadic), a road-side unit, or a centre-side system. In order to achieve their goals,
applications and facilities typically need to form ad-hoc collaborations with other applications
and facilities. Due to the dynamic and distributed nature of the CVIS system, the lifecycle of
each application and facility will be independent from other applications and facilities. This
implies that the formation of collaborations will be a dynamic process as well.

In order to establish collaboration, an application has to find the peers with which to
communicate. Within a particular CVIS host, the OSGi framework offers a local service
discovery mechanism. However, this mechanism is not designed for operation in a distributed,
dynamic environment. For this reason, CVIS offers an additional discovery mechanism, the
"Distributed Directory Service" (DDS). In essence, the DDS offers a yellow pages service
across the CVIS network. This mechanism allows an application to search for applications
running on other CVIS hosts based on a set of specific selection criteria. Examples of specific
selection criteria are:

Applications in vehicles in a particular area;

Applications in vehicles travelling via a particular junction;

Applications in vehicles carrying (a particular class of) dangerous goods;
Applications in road-side systems in a particular area;

Applications in road-side systems along a particular road segment.

The result of the search is a set of communication handles that are returned to the searching
application. Each communication handle enables the searching application to set up a
communication channel to another application that satisfies the search criteria.

3.2.2 Application programming interface

DDS basic facility is provided as single Java bundle running on the local CVIS host and
provides the services defined in the DDS API. The DDS API is shown in Figure 22

class Logical View /

IDDS

Application deregister(SADescription) : void

modify(SADescription) : void

register(SADescription) : void

search(SearchConstraint, SADescription) : SADescription[]
subscribe(SADescription) : void
unsubscribe(SADescription) : void

+ 4+ + + + +

Figure 22: The DDS API

An application or a facility uses the register operation to register themselves with the local
DDS facility when they are deployed. This is accomplished by submitting a description
object. The specification of the description object is shown in Figure 23. It includes an
identifier which is unique within the local CVIS host, a "Universal Resource Identifier" (URI)

04-06-2010 38 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

which acts as a communications handle, some flags and an optional set of properties (encoded
as key-value pairs) such as the area and direction where the vehicle is currently travelling, its
cargo etc. An application can modify these registered properties with the DDS when their
values have changed. It is also possible for the application to deregister itself.

The search operation is used to look up available services and applications. As part of the
search an application submits a set of selection criteria by defining a number of properties.
The application can also define a search constraint, which contains a timeout period (defining
the maximum amount of time a query may take), the maximum number of resulting
communication handles, of the maximum depth of the search. If successful, the DDS will
return a set of description objects including the URIs of the matching peers. The URIs acts as
communication handles. The description objects also include the last known values of the
properties.

Based on the query result, the application can perform a number of actions. For instance, it
can initiate a separate communication session with one or each of the matched peers, e.g. in
order to perform some kind of negotiation, or it can perform a multicast to the set of peers. It
could also choose not to initiate a communication session at all, but instead take an action
based on the received values of the properties of the selected peers.

In the case that there is only a limited amount of discovery time available, e.g. with vehicles
entering the local communication range of a road-side unit at high speed, the performance of
the above DDS mechanism might not be sufficient. In that case, the publish/subscribe
mechanism offered by the DDS can be used. An application can register itself with its local
DDS instance by submitting a description object, where the "isPublish" flag is set to 'true' (its
default value is 'false'). This particular form of registration implies a publish action. The DDS
will initiate a continuous broadcast of the presence of the service provided by the registered
application, i.e., the identifier and the URI are broadcasted within the transmission range of
the corresponding CVIS unit, e.g. a road-side unit.

An application executing on a mobile host, e.g. in a vehicle, that wants to discover and initiate
a communication session with providers of particular service subscribes its interest of this
service. This is accomplished by calling the subscribe operation and submit a description
object describing the service of interest. From this moment on, its local DDS instance will
monitor all available communication channels for the presence of this service. At a certain
moment, the mobile CVIS unit enters the communication range of the broadcasting CVIS
unit. The local DDS will directly be made aware of the broadcasted service, and forward the
description object with the corresponding URI to the matching subscribed entities. Upon
reception of the description object, the recipient can directly set up a communication session.

When the application does not wish to make its services available anymore, it deregisters
itself with the DDS.

04-06-2010 39 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Method Type Parameters
register(sad) void Sad: SADescription - in
deregister(sad) void Sad: SADescription - in
modify(sad) void Sad: SADescription - in
Sad: SADescription - in
search(sad, sc) SADescription[*] Sc: SearchConstraint - in
subscribe(sad) Void Sad: SADescription - in
unsubscribe(sad) Void Sad: SADescription - in

3.2.3 Information model

The DDS information model is depicted in Figure 23.

class InformationModeI/

SADescription

+ DDS-SAID: int
+ isPublish: boolean
+ Mandatory: boolean

uri: URI

Property
SearchConstraint
+ key: String
+ value: String - maxDepth: int
maxResults: in
timeout: int
RegisteredList SubscriptionList

Figure 23: DDS information model

It specifies four information objects:
The description object SADescription_contains the following attributes:

o The identifier DDS SAID which is defined according to element AID of the
CEN DSRC standard EN 12834. This identification includes identification of
the application type.

o The service announcement broadcast flag isPublish. Setting this flag to true
implies regular broadcasts of the provided service of the registered application

04-06-2010 40 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

or facility. The default value is false.

o The "Mandatory" flag. Setting this flag implies that the provided service is
mandatory. For instance vehicles may be required to install a particular tolling
application before entering a particular city.

o The communication handle in the form of a URIL

Properties (encoded as key-value pairs) may include information such as the area and
direction where the vehicle is currently travelling, its cargo etc. The properties are used as
baseline for setting search criteria when looking up particular services. Care must be taken
by application designers to ensure that the property facility is used in the right way. For
instance, if the application were to register the actual position as a DDS property, then a
periodic update of this value (say each second) would most probably incur a huge
performance cost. Therefore, properties must change its value only slowly over time.

The SearchConstraint defines constraints on the search. It contains the following attributes
o maxDepth,
o maxResults,
o timeout.
RegisteredList contains the list of registered applications and facilities
SubscriptionList contains a list specifying which local applications and facilities that have
subscribed to what services.
3.2.4 Interaction model
The DDS provides two discovery mechanisms; search and publish-subscribe as presented in
section 3.2.

The behavioural model related to the search mechanism is specified in Figure 24. The
scenario includes a provider side (provider application, DDS, connection manager and
communicationInfrastructure (CommlInfr)) that resides on one particular node, e.g. a vehicle,
and a consumer side (consumer application, DDS, connection manager and CommlInfr)
residing on another node, e.g. a road-side unit.

04-06-2010 41 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

sd register search /
Application DDS ConnectionManager| Commlinfr Commlnfr ConnectionManager| DDS Application
(provider) (provider) (provider) (provider) (consumer) (consumer) (consumer) (consumer)
T
| register(sad:
E SADescription)
i i
I I I I l I
DNSRegistering() 1 1 1 search(s:SearchConstraint, ;
\ =L:.| E E sad:SADescription) :
i i 1l SAPescnpnon[]
i
i search(s:SearchConstraint, sad: o
Zeroconf DNS-based Service Discovery (DNS-SD) (see H SADescription, p:Priority)
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt). H H
- <
I T
I I
' I multicast DI
I I I I
I I
I I
I H I H
: I I I
< search() ! ! !
| | | |
I ' I I
] o SADesiption b
1 I I H
I I I I
H H H H ™ open(uri:URI)
i i i i <
I I 1
| |
B open(uri:URI) !
H H
i i i
o I I H
[open(uri:URI) H H 1
< T I I I
I
i | :Connection | | |
[mommmmmTmmmmommomoogmmmommomoooooo 5 500t ettt Stttk el iieliniaiel >
I I I I I
T I n
i 1
I I I I
I I I I
| modify(sad:SADescription) | 1
|
i i
' I
DNSmodify() -
T L
i ! o
T I
unRegister(sad:SADescription) H
! :
DNSUnRegister() !
+ >
]] 7
I
l

Figure 24: The search sequence model

After the consumer application has discovered the presence of provider application, it sets up
a communication session through the communication handle (the URI) it has received from
the provider DDS.

The usage scenario above depends on an active search to be performed by the application that
wishes to initiate a communication session. Depending on the search criteria used, this search
can require a considerable period of time. Since CVIS in-vehicle hosts may be travelling with
speeds in excess of 40 m/s, i.e. 144 km/h, the typical dwell time within the communication
range of a road-side unit with a potential communication partner may be very short (less then
a few seconds).

For this reason, the DDS also offers a "publish-subscribe" mechanism. An application can
subscribe to (and de-subscribe from) applications of a particular type. The DDS will then
listen' for applications of this type, on behalf of the subscribing application. As soon as the
DDS discovers, through the usage of its underlying infrastructure, e.g. CALM FAST service
advertisement (ISO 24102 and ISO 29281), that there is such an application within reach, it
will immediately provide a communication channel between the publisher and subscriber
applications that can be used to fulfil the applications' communication needs. This is
illustrated in Figure 25.

04-06-2010 42 Version 1.0

“‘ cv S CVIS Architecture and
System Specifications

The DDS has just discovered
that an App “A” is in
communication reach. Its
contact details are....

Communication reach
of RSU

The DDS has just discovered
that an App “A” is in
communication reach. Its
contact details are....

Figure 25: Illustration of publish subscribe scenario

The "publish-subscribe" sequence diagram is shown in Figure 26. Once again, the scenario
includes a provider and a consumer side. After registration with the DDS, with the "isPublish"
flag set to 'true’, the DDS start continuous broadcasting of service announcements based on
the information in the description object. As soon as a consumer comes within the
transmission range, the consumer DDS picks up this broadcast and relays it directly to the
actual application that has subscribed to this particular service. The DDS relies on services
provided by the underlying communication infrastructure to provide this broadcast-and-detect
facility. The connection is set up by the connection manager similarly as for the search
scenario. Thus the interaction with the connection manager is not shown in Figure 26

04-06-2010 43 Version 1.0

<« CV

S

CVIS Architecture and
System Specifications

sd sequenceDDSpubIishSubscribe/

...._.._.._.L

Application needsto find out if behind URI the
appropriate partner is available (either by looking at the
opt. data or by some initial application specific

comunication sequence).

AN

Watch out: there might be more than one result (URIs) o
potential communication partners!

unregister()

Application DDS Comminfr Comminfr DDS (provider) Application
(consumer) (consumer) (consumer) (provider) (provider)
T T T T T T
]]]]]]
| | | | | ister(iisPublish TRUiE
| subscribe(DDS- ! ! ! ' Begls SXTS : ish= E

i i i - , Property(],
DSAlD)]]] N]
i i ! ! ! Mandatory, Expiry, !
! ! ! ! ! AppProviderLink) !
' ' ! ! handover(AID, ! !
! ! ! ! Property[], L L
! ! ! \ priority)
))))
1 1 1 1
]]]
| | | broadcast (AID,
i i i Property(], IP:port)
i i
: 1
! notify(URI,
i Property[])
L \
\
N T T
N]]]]]
\ H H open H H H
N i (URI) i i
N 1 1 1 1
N 1 connection i 1
D I gmmmmeTesT e pommmmmmmmeees fommmmmmm e
A]]] J
1y))) []
" 1 1 1 1
unsubscribe(DDS- AN i | i i
SAID) 5\ \ \ \ \
\))))
N 1 1 1 1
]]]]
| | P unregister() '
]] -
i i
]]
1)

Figure 26: DDS '"'Publish-Subscribe'' scenario

In some cases applications can be mandatory. For instance authorities of regions, e.g. a city
authority, can require some applications, e.g. a particular tolling application, to be present to
allow entrance into the region. When registering such an application both the "isPublish" flag
and the "Mandatory" flag need to be set. The "isPublish" flag ensures broadcasting of service
announcements and the "Mandatory" flag ensures that if the application is not available a
download action is triggered. This scenario is a special case of the above "Publish-Subscribe"
scenario. The sequence diagram is shown in Figure 27.

04-06-2010

44

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

DDS (provider) Router (provider)

‘ DDS (consumen)) ‘ ‘ HMCA ‘ ‘ HMC ‘

AppProvider ‘

register(isPublish=TRUE, DDS-
SAID, [Data], Mandatory, Expiry,
AppProviderLink) |

broadcast Register(AID, prio.
expiry, |

InitiateGet

L ink)
LoadApp(AppProvidertink) e TV
downloadApp
App. —‘J
App.
Application initApp

subscribe(SAID Sub-

D) ;

notify(UR, [data))

| notify(URI, [data))
< pen (URI)

H cccccc ti
} X

Figure 27: Mandatory service

3.3 Security framework

CVIS adopts the security framework from GST-SEC and SEVECOM ESPRIT projects. This
chapter provides an overview of the security components specified. More details are described
in D.FOAM.3.2 chapter 12.

It should be noted that the work in CVIS WP4 will not necessarily develop all the applications
described in the architecture documents. Thus there may not be a full reference
implementation, making all components available for demonstration. However the security
concepts that should be used by all applications in a cooperative system are described here for
completeness.

3.3.1 Overview

CVIS originally intended to build its security framework on the GST-SEC and SEVECOM
ESPRIT projects. However, both projects did not deliver a working solution and CVIS FOAM
had to redesign and deploy a full solution. This chapter provides an overview of the security
components specified.

For application design the security framework can or shall be used by utilising the specified
parts if needed for the application security. The framework offers towards applications:

Interfaces for authentication and authorisation: To be used if service applications (or an
application used to log in an end user) shall approve their identity to the system and if
authorisations to this identities are needed, e.g. to get access to information or to use
functions.

04-06-2010 45 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Secure communication: To be used instead of the normal communication if a secured
communication channel shall be established.

Identity manager: To be used if applications want to use specific mechanisms (e.g.
pseudonyms instead of their unique, traceable identity) in order to protect privacy. (This
component is under investigation in SEVECOM).

.~~~ Authentication

\ Cient B
Authentication/ .-~~~ an o
2 Authorisation
EndUser : N
] N\
1 AN .
| AN -~ Secure
1 \ e . .
«invokes» . communication
i . -
.
,X
. «invokes »)
Client L s ..~~~ Identity
Authorisation- X Manager
P ~~\\\ /,/ \\
’;:‘\\ &
-7 «invokes»
Secure
| ommunicatio
ServiceApplication £ P
__--«invokes»

Client
dentityManage

Figure 28: The security framework reference points

The security framework developed within FOAM comprises the following element:
¢ On the host management centre side:
o Authentication broker
o Authorization broker
o User subscriptions
¢ On the client side (in-vehicle or roadside):
o Authentication Broker
o Authorization Broker
o Secure Communication

o Secure Module

04-06-2010 46 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

® On the server side (application provider side and security backend):
o Identity Manager '
o Service Broker
o Attribute and Assertion authority
The following sections will describe those elements except the identity manager (see also

footnote).

3.3.2 Security framework components

1.1.1.1. Security module

Process view

The Security Module is used by the Secure Communication, and the Authentication and
Authorization subsystems. The two main uses of the Security Module are:

e to provide secure persistent storage of keys, certificates and data

e to provide cryptographic functions (like signing and verification, encryption and
decryption, message digests etc.).

Secure storage

Its function is to store and retrieve keys, certificates and data in a secure and persistent way.

Name Description

Store keys Stores d?fferent types of keys (public, private etc.) in a secure
and persistent way.

Store certificates Stores X.509 certificates in a secure and persistent way.

Store data Stores arbitrary data in a secure and persistent way.

Cryptographic function

Name Description

Signing and verification are necessary if data need
Sign and verify data authentication. Private keys are used for signing, public keys for
verifying data. SHA-1 is used in combination with RSA.

Encryption is required in the case of data classified as
Encrypt and decrypt data | confidential. Encryption and decryption are realized with the
help of AES algorithms, in CBC mode, with PKCS5 padding.

Create message digest Produces a 160 bit long hash with the SHA-1 algorithm.

Generate MAC A message authentication code is a code produced with a secret

! The identity provider was not delivered by Sevecom in the course of the project. FOAM
decided to use the Enterprise Sign-On Engine (ESOE, http://esoeproject.org/) as backup.

04-06-2010 47 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

key to protect the integrity and authenticity of a message. The
MAC algorithm used in the software is HMAC-SHA-1.

Securityhd odule
CryptoEngine

I
|
I
I
: Signierify daa
|
I
/
|

__4
SecureCo mmnik

AutherticationAndfthariz

Figure 29: SecurityModule use case

04-06-2010 48 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Logical view

The SecurityModule subsystem can be decomposed into the following structurally significant
interfaces:

e SecurityModule

e SecureStorage

¢ CryptoEngine

e SecurityModuleFactory
e Provider

The SecurityModule interface is at the core of the SecurityModule subsystem's architecture. It
provides methods for secure storage and retrieval of data, and cryptographic functions.
Therefore, the SecurityModule interface is derived from the SecureStorage and the
CryptoEngine interfaces. SecureStorage is the interface that defines the methods needed for
the secure storage and retrieval of keys, certificates and data. CryptoEngine's methods are for
signing, verification, encryption etc.

The SecurityModuleFactory interface is the factory used for creating SecurityModule
instances.

The Provider interface should be implemented by service providers who want to create their
own secure storage and crypto engine implementations.

04-06-2010 49 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

class secmodule

winterfaces

CrypfoErgine
CERTIFICATE _TWwFE: String = "x.509" freadQnly}
CIPHER_ALGORITHM: Sting = "AES" {readOnly}
CIPHER_MODE: String = "CHC" freadOnly}
CIPHER_FADDING: String ="PKCSSFadding" freadCnlw}
CIPHER_TRANSFORMATIOMN: String = CIPHER_ALGORITH... {readOnlv}

MESSAGE DIGEST ALGORITHM: String = "SHA-1" {read0nlv} -
MAC ALGORITHM: String ="HmacSHA1" freadOnly} winterfaces
SIGNATURE_ALSGORITHM: String = "SHAIwithRSA" {read0nly} Lecurelforage

o+ o+ o+ o+

storebiewiSting, Mey, Cedifoate[], hoolean) @ chad]
stomebieyiSting, Mey, Cedifoate[], ehai], hoolean) & woid
store Cediffoate (Shing, Cerificate, hoolean) © wodd
stomeData (Shirg, bytel), boolean) chad]

stoeData (Stirg, bytel], chad] hoolean) & vodd
store Ofyect(Stimg, Offect, Aoolear) ©ohar]

store OMyect(Shirg, Offect, char) hoolean) void
metievedey Siing, cha]) : Hey

edie e Certiffeate Ghain (Stimg) - Cerifieate]
etiee Cetifeate (Shimg) ;- Cediffcate
mediere stz (Shirg, chag @ hye]

medie e Opect Shimg, chanf) © Civect

zFwe (] ; void

rearoe e ST) ;o voia

reno e Cefifogte (Shimg) - woid

memorelztaShEeg) o owoid

et Oyectil () Shimg

get Owimerdlizs() | Shing

getdeeess Toker () - ehar)

oregte Cerifoate e) : KO0 0erfifoate

cregte Cerifoate fwte [, int, int) - Xe03Cedifcabe
sig e [, Pivatedey) htef]

sigrfhybe [, et int, Privabelfiey) @ hytef]
getSigrenPhuateey) - Sigratume

vedfghhef ddell Publiciey) © boolean

vedfyghybely, int, int, hde (), Fublicker] @ boolean
vedfyghyta [hytell KA0Cedifeate) hoolean
vedfyghyhall int, int, bube], HE00Cedifoate) @ hoolean
getliedfenPublickey) - Sioratume

get edfen®a02Cedifcate) | Signatume

digestibytel]) bitef]

digestiter] int, int) - bpe]

gettigest]) @ Wessagegest

gereate Algodtha Paaameters) | AlgondthmPaemneters
encryotihwel], Hey, AlgodthaPaameters) © syel]
ereryptih el int, int, Hey, AlgodthaPaaneters) @ hute]
getErcnptoniey) - Gioker

getEronptoniey, AlgodthaPaeneters) @ Goker

Foh ot F o FFFF o+ +

decryptiel] Hey, AlgodthaPaameters) @ axel]
decryptihwel], int, int, Hey, AlgodthwPammeters) - hyvte]
getDecnyptonier] @ Goker

getlecnptoniey, AlgodthaPzeneters) @ Goker
gereFtelfzose) Key

machel] Key) . dyel]

arFfhybe), int, imd, Mey) hwhel]

getiiaeiay) @ Wac

il

ainterfaces «interfaces

SecurifyModwleFaciony SecurifyMedule

egisterTmudenPoiden) Jwodd b e oS =
emoreSmuidenShdng) o wodd wfactonms

Foguire Secudtylodewle (Shirg, Sting) o Secudtyiodele
et Secuatyidodwle (Secudtyidooule) o woid

+ o+ o+ o+

winterfaces
Frovider

getliame () © Stimg

oregte Gryptolmgine (Shimg) @ CryotoEmgime

ezt Secum Storgge (Shimg, Shing, eha)l @ Secume Shomge
doCall8ach(] : Aooleaw

getdecess foker) | cha]

getOwirerdlias(@ Shimg

+ o+ + + + +

Figure 30: SecurityModule class diagram

04-06-2010 50 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Implementation views

The implementation classes are shown on the diagram below.

classimpl

Software0nlyCryptoEngine

createCerificate(byte () : X509 Cerificate

decryptibyte(], Key, AlgarithmParametars) : byte]
decryptibyte(], int, int, Key, AlgorithmP arameteis) : byte[]
digestibyte[l) : byte]
digestibyte]], int, inf): byte[]
encryptrbyte(], Key, AlgarithmParameters) : byte[
encryptibyte(], int, int, Key, AlgorithmP arameters) : byte[]
getDecnyptoniey] : Cipher
getDecryptoriey, AlgorthmP arameters) : Cipher
getDigest) : Messagebigest
getEncryptori<ey] : Cipher

ey, i : Cipher
qethactey) : Mac
getSignenFrivateley) : Signature
getverifierPublickey) : Signature
qetverifiex509C e tificate) : Signature
macbyte(], Key) : byte[]
machyta(], int, int, Key) : byt
signibyte[]. FrivateKey) : byte[
signibyte[], int, int, Privateley) : byte]]
warity(byte[], bytal], Fublickey) : boolean
weritybytel]. int, int. bytell. Fubliskey): bolean
weritybytel], bytel], ¥500Cedificate) : boolean
warity(byte[], int, int, byte[], X509Certificate) : boalean

FE

generateMacke() : Key

winterfaces

createCerificate(bytel], int, in) : X509C edificate .

Software OnlyFrovider

createCryptoEngine(Sting) : CryptaEngine
craateSecuraStoragerSting, String, charl): SecureStorage
doCallBacd: boolean

gettiesessToken() : shar]]

getNamer) : String

getDwnertliast : String

+ ok o+

winterfacen winterfaces

Cr

Software OnlySecureStorage

ainterfaces
seomody

ecurityModule

SecurityModulelmpal

e

PI(Crep g
retrieve CertificaterString) : Cerificate
retrieve Certificate ChainiSting) : Cetificate]]
retrieve bata(Sting, sharll) : byte]
retrieve Key(String, charfl): Key
retrieve ObjectiSting, sharll) : Object
savel) : void
storeCentificaterSting, Certificate, boolean) : vaid
storeDatacSting, bytell. boolean) : char]
storeley(String, Key, Cerificate]], boolean) : char]
storeObjectSting, Object, boolean) : char]
createCerificaterbyte [) : X509 Ce tificate
createCeificaterbyte(], int, int) | X500Cerificate
dacryplibyte(], Key, AlgorithmParametars) : byte]
decryptibtel]. int. int. Key, AlgorithmFarameters) : byte]]
digestibyte[l) : byte[]
digestibyte], int, int): byte[]
encrypiibte]l, Key, AlgorithmP arameters) : byte]
encryptibytel], int, int, Key, AlgorithmParameters) : byte]]
getDecryptorniey) : Cipher
getDecryptoriey, AlgorithmParameters) : Cipher
getDigest): Messagebigest
getEncryptormiey) : Cipher

ey, i Cipher
gethac(key) : Mas
getSignerPrivateley) : Signature
getverifienPublickey) : Signature
getverifiefX508C e tificate) : Signature
macbyte], Koyl : byte]]
macgbytel], int, int, Key) : byte[]
signibytel]. Frivatekey! : byte]
signibyte[], int, int, Frivatekey) : byte]]
werifybyte[), byte[], Fublickey] : boolean
werifytbytel). int. int. bytel]. Publickey) : boslean
werifybyte], byte[], X500 Cerificate) : boalean
warifybyte[], int, int, byte[], X500 Certificate) : boolean
gethcoessToken(r : charl]
getbject!d) : String
getOineralizs) : Sting
storeDatacSting, bytell. charll. boolean) : void
storekey(String, Key, Cerificatel], char], boolean : vaid
storeObjectSting, Object, char]], boalaan) : void
remove CertificaterString) : woid
remeove Data(Sting) : void
remeove Key(Sting) : vaid

generateMackieyl) : Key

SoftwareOnlySecureStorage(Sting, String, char)
savel) : woid

refrieveCertificate(Sting) : Carificate
retrieveDatarString, charl)) : byt

retrievebjectString, charll1: Object

refrieveleyiSting, sharfl): Key
retrieveCertificateChaintSting) : Certificate]]
AoreCeificaterSting, Certificate, boalean) : void
storeData(Sting, byte]], boslean) : char]
storeDatarSting, byte[], charll, boslean) : void
storeObjectSting, Object, boolean) : char]
soreObjectiSting, Object, charl], boalean) : vaid
storeKey(Sting, Key, Certificate]], boalean) : char[]
storeKey(Sting, Key, Cerificate]], charl. boolean) : waid
gettiesessToken() : char]]

getObjectid) : String

getOmnerdlias(: String

removeCerificate(Sting) : void

remeveD ataiSring) : vaid

removeKey(Sting) : void

e

winterfacexs

secmodule: Securify ModuleFactory

i

SeaurityModulzFactarylmpl

SecurityModuleF actorylmpl()
qui ityhdodule(Sting, Sting) :
h B ;

cwoid

registerProvidenProviden : void
remeweProvidenSting) : vaid

Figure 31: Implementation classes

1.1.1.2.

SecureCommunication subsystem

The main usage of the SecureCommunication subsystem is the sending and receiving of
messages at different security levels (insecure, confidential, authenticated and secure). Before
any messages can be sent, a connection needs to be created between the client and the server,
and a key agreement phase has to take place.

04-06-2010

51

Version 1.0

CVIS Architecture and
System Specifications

SecureCommunication

L

Client

Key Agreement

Creates handler

Securitytdodule

Sendireceive data

\

Creates waorker

Lj_{' winclude:

\

.
wincludes

Serwver

Creste connection

Figure 32: Communication use case diagram

Client-server setup

Name

Description

Creates handler

A handler is needed at the client side that will take care of the
handling of messages. It should be created before any actual
communication happens.

Creates worker

The server needs workers to deal with messages coming from or
going to the clients.

Communication

Name

Description

Send/receive data

Both the client and the server can send and receive messages.
Depending on the security level of the connection, the message
has to be signed and/or encrypted (verified and/or decrypted)
before sending (after receiving).

Key agreement

Key agreement must precede any type of communication. Its
aim is to decide on common credentials that can be used later
for identifying and verifying each other and the messages
received.

Create connection

Establishes a connection between the client and the server, with
the required security level.

04-06-2010

52 Version 1.0

CVIS Architecture and
System Specifications

«"CVIS

Logical view

The Secure Communication subsystem comprises several interfaces, some of which are used
only at the client side, some at the server side, and others at both ends. Because of the
resulting complexity, first the interfaces are listed in alphabetical order, followed by the
detailed description of the client and the server side.

Core interfaces and classes

Some of the below listed classes are implementation-specific, and are here only for ease of

reference.

Name Description
Defines methods to handle incoming and outgoing messages at
Handler . i
the client side.
HandlerNotifer A thrf:ad that will guarantee asynchronous communication at
the client side.
Messace Defines the structure of messages sent through secure
& connections. Implementation-specific class.
An implementation-specific utility class that performs the
MessageUTtil serialization of messages, reads and writes from and to channels
and streams.
A secure communication engine can encode and decode
SCE messages, and initiate key agreement. It relies on the associated
Security Module. Implementation-specific class.
Represents a secure connection between the client and the
SCEConnection server. A connection can have any of the following security
levels: insecure, confidential, authenticated and secure.
) The f: h i itself i i
SCEConnectionFactory e factory that registers itself as a service and provides secure
connections when necessary.
SecureKeyAgreement An implementation-specific class that plays the key agreement.
The core of the server-side architecture; its role is to accept
SecureServer . . .
incoming connections and store them.
A factory for creating the above mentioned server instances,
parametrized according to the user's needs. Some frequently
SecureServerFactory . .
used parameters are for instance the security level of the server,
the port it will listen on, and the associated WorkerFactory.
Manages messages at the server side.
Worker A Worker thread's role is to handle a message received from a
client, and prepare an answer message if required.
Factory for creating Worker threads based on the user's needs.
WorkerFactory For each Worker object, a WorkerRunner object is created,
which will be stored in a pool.
04-06-2010 53 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Name

Description

WorkerRunner

A WorkerRunner is a thread that deals with incoming and
outgoing messages. More specifically, when a read or write
event happens on any of the channels registered with the server,
a WorkerRunner's job is to convert between Messages and byte
arrays, decoding or encoding with the help of the SCE. It will
delegate the task of handling and preparing the messages to an
associated Worker. WorkerRunners are event-driven.

WorkerRunnerPool

An implementation-specific pool that stores worker runners.

04-06-2010

54 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

xinterfaces

SecureCommunicafionEngineCormeciionFaciory

CommectiorFaciony

Connrection

winterfaces

+ SECURITYLEVELPROPERTY: String = "securitylewel| SecureCommunicationEngineConmecion
+ |INSECURE: String="I" sfactonys -
+ AUTHENTICATED: String="4A" + ErdlfessFge pytef]) o woid
+ COMFIDEMTIAL: Sting ="C" + setRadlenfEedlen - woid
+ SECURE: String="5"
+ SCE_SCHEME: String = "soe"
zinterfaces
SecurelServerFaciony
+ oeate Senventideg, ind, et Secudtydodule, WorkerFaotory, PoolCorfig, poolean) @ Secwre Senner
+ ceate SenenSting, ind, int, Secudtyidodule, WadierFactony, hoolesr) @ Secure Seaer L _____
+ oceate SenenStieg, ind, int, Secudbyidodule, WorkerFactony) & Secwme Sener afactonys
+ create Senemivet SocketAddess, imt, Secadtyfodule, WoierFaetory, Pood Config, Aoolean) © Secure Sener
+ ceate Senenivet Socketdddess, int, Secudtylfodule, WadierFactony, hoolezan) & Secure Sener
+ oeate Senenivet SocketAddese, int, Secudtyldodule, WoderFaetory) | Seocuwme Sener
I Tt R
\“L:,.r winterfaces
Warker
winterfaces
WaorkerEaciory + initfretSocketdddess) o uodid
+ handle el - woid
+ ocmeatelloren) @ Warer k- - __ =+ pepamg ave]]
alactonse |4 gepmidn : void
+ isReadiext() hoolean
+ izlliddetiexd] @ hoolear
+ izCloseReguied(] @ boolean
+ olosefvet Sochkebdddress) [vodd
'
AbsfraciWorker
NEXT_EWENT_READ: int= 1 {readdnly}
MEXT_EWENT _WRITE: int= 2 {readOnly}
MEXT_EWENT_CLOSZE: int=32{readOnly}
seszionsData: Map = Collections.syn...
address: InetSocietiddress
data: Map
nextEvent: int
+ iniflnetSocketiddrass) : vaid
+ delnit]) : woid
+ olose(lnetSodettddress) : void
putlObject, Object) : woid
getfObject) : Object
removelObject) : woid
containgObject): boolean
setReadMesxt) : woid
setiirite Mexd : void
setClozeRequiredd) : void
+ isReadMext) : boolean
+ igifriteMex=t]) : boolean
+ izClozeRequirad): boolzan
. . . .
Figure 33: SecureCommunication class diagram
. .
Client side
Connections are initiated at the client side, therefore,

winterfaces
Handler

+ hamdledhybef o void

ainterface:
SecuneServer

+
+

st o void
stop () void

Pool Config

initialCapacity: int
maximumCapacity: int

FoolCanfiglint, int)
getinitialCapacity’ : int
zetinitialCapacityint) : woid
gethdaximumCapacityl) : int
sethdaximumCapacitwint) : woid

the SCEConnection and
SCEConnectionFactory interfaces are used here. At each client, there is a SCE instance with
an associated Security Module. The latter one stores confidential data that the client may
require during communication (keys, certificates etc.). Messages are handled by a Handler at
this end. Handlers are notified by HandlerNotifers.

04-06-2010

55

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Server side

A SecureServer instance is created with the help of a SecureServerFactory. A
WorkerRunnerPool and a Security Module belong to each server. The WorkerRunnerPool
contains the WorkerRunners that will be fetched to react to incoming messages, which partly
means delegating message-handling methods to Workers. To each incoming connection an
SCE is created.

Process view
Overview of the major scenarios
The following scenarios are explained in this section:
e Starting the client
¢ (lient sending messages
¢ C(lient receiving messages
e Key agreement
e Starting the server
e Server accepting connections
e Server sending and receiving messages
Starting the client

At first, the client establishes a connection (gets a ConnectorService, asks for a proper
ConnectionFactory which then creates the required type of connection). In our case,
connection requests whose uri starts with "sce://" will be handled by the
SecureCommunicationEngineConnectionFactory (SCEConnFactory), which will create a
SecureCommunicationEngineConnection (SCEConn).

At the creation of the SCEConnection, an SCE instance is bound to the connection, and a key
agreement takes place. This SCE instance will deal with encrypting, decrypting, signing etc.
Messages sent and received at the client side. At the end of this phase, the input and output
streams are opened that will be used for communicating with the server.

Before sending messages, a handler must be provided whose role is to handle the messages.
Setting the handler triggers the creation of a dedicated HandlerNotifer thread, which will look
for incoming messages.

Client sending messages

The client can send a message by calling the secure connection's sendMessage method. The
required security level (I, A, C, S) is the property of the connection, but it is encoded in the
message, too. First, the message data are encoded (authentication info is added, encrypted if
necessary etc.) using the SecureCommunicationEngine's encode(byte[]) method, which
returns an appropriately wrapped Message. As the message will be sent through a stream,
which can only handle bytes and byte arrays, the message needs to be transformed into a byte
array. This transformation is performed with the help of a MessageUtil class. The resulting
byte array is then sent to the output stream using the stream's write(byte[]) method.

Client receiving messages

Receiving a message is an asynchronous process. A dedicated HandlerNotifer thread listens

04-06-2010 56 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

on the input channel for incoming data. If a message arrives, the thread notifies the Handler
attached to the client to handle the message. The message is retreived from the stream with
MessageUtil's messageFromSource method, it is decoded using the SCE, and finally the
Handler's handle method takes care of dealing with the message.

=d Cliert
Q SCECannFactery MeszagaUtil
iy
Client Bundle
createConnestion :§CEConn
-
SCEConn|
""""" = ansSCE :
eeeeeeeeeei....z|=cureCommunicationEngine
Forzake of bravity, CalmC
we present a
simplifisd viewst || | [T
creating a
Connection : is
Howener, it is to be openinputStream '_'[‘E"_”_S_‘[E_"_g_ InputStream
implemantad as
spesified in Figure o5
25
(DEL_FOAM_3.1..) | | |
: . : : T : aHandler
77777777777777777777777777777777777 R R S O S S Handler
setHandleraHandler : Handlen) :
; i : : HandleNotifier
: new Thread(is) : :
et Rl i S rromtoomsosenson i
| loop 7
' =B sleep(n)
! [is. avail able(m=0]
: [else]
: e
: msg= messageFramStreamiar : byte [Message
: read(anawer : bte [sint
= decode(msg - Message) byte [| :
: : : handle(msg - byte)
W K
lacp
oo/
sendMessage(ar - byte) L :
. - : !
msg= encodean ; byte [) Message 1 : H
- : :
enhfsg= message ToStream(msg) byte [: .
: >
write(enMsg : byte [
retum; : H
R Heh bbbl w
S

Figure 34: Creating connecions, sending and receiving messages at the client side

Key agreement

Before the client can send messages to the server, a key agreement process has to take place,
the aim of which is to agree on the credentials that will later be used to secure the
communication. Key agreement has to take into account the required security level. A
connection can only be created if the security level of the client is the same as that of the

SErver.

It is always the client that starts the key agreement. First, it sends a session ID to the server

04-06-2010

57

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

which either accepts it or creates a new one. This depends on whether the server has the
relevant information about the client stored from previous communications. If the security
level of the end-points is not the same, communication fails and the connection is refused.

Further action depends on the required security level.

e [nsecure connection (I). Insecure connections do not require that messages be
encrypted or signed, therefore, key agreement ends, and the connection is established
successfully.

e Confidential connection (C). Confidentiality means that messages are encrypted. This
requires that both partys have a common key to encrypt and decrypt messages. The
client sends random data to the server that generates its own random data based on
what it has received, and sends it back to the client, together with its certificate chain.
On the basis of the data received from the server, the client generates an Initialization
Vector and an AES key, and sends them to the server. The client then creates a hash
from all the data it has sent with the common key. The server receives the hashed data
and decrypts it with their common key. If the decrypted data are not the same as those
it received earlier, the server aborts the connection. Otherwise, the server signs data it
has sent earlier with its private key. Finally the client verifies the server using the
public key it has received from the server in the certificate. If verification fails, the
connection is refused. Otherwise, the connection is established successfully.

® Authenticated connection (A). Authenticity requires that the client and the server have
each other's certificates that contain the public keys needed to identify the other party.
At the beginning, the client and the server send their own certificate chains to each
other. They recover the other party's public key from the certificates. The client and
the server then sign their own certificate chains with their own private keys, and
exchange the signed data. Finally, they verify each other. If verification fails, the
connection is refused. Otherwise, the connection is established successfully.

e Secure connection (S). This type of connection is the combination of the confidential
and authenticated type. As such it requires that the client and the server agree on a
common key , exchange certificates and verify each other as described above.

Starting the server

The server as such is an OSGi bundle. It seemed reasonable therefore to implement the
server's setup at the Activator's start method, while the shutdown in the stop method.

At server startup, the user creates a SecureServer instance with the help of the
SecureServerFactory, where it can specify the port that the server will listen on, the security
level of the server, the associated Security Module, the WorkerFactory that will create the
Worker threads, and the pool configuration properties. The latter one is optional: if no
PoolConfig object is given, a default setting is used. It can also be specified whether the
server's first task should be receiving messages from clients or sending out messages.

Before the actual SecureServer is created, a new worker pool is filled with the number of
worker runner threads specified in PoolConfig. This happens by calling repeatedly the
WorkerFactory's createWorker methods, and instantiating WorkerRunners with the returned
Worker threads. At the beginning, all workers are available.

The SecureServer is instantiated with the specified port and the previously created worker
pool. Calling its start method will start the server.

04-06-2010 58 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

sd Server
Sﬁ SecureSenrarf actony
Creates and
A manages Workers
Semice Bundle bazed an
!] FoolConfig
' WarerF acto i
! o el Runsin a separate
"""""" = thread.
cregteSenranhost : String, port: int, wi: WaortkearF actory, poolCfg : PoolCaonfig, IreadFirst cboolean) :SecureSenver H
) L i
aPoal ;
_________________ ;EDWorkerRunnerPool
These j 1 |SecureServer
activities newpart, aPooll i
are 1 s
executed ' |
R e .
method of !
Elul?dle tart
Ll (LT 1 A B B e e e L L bbbl e e bbb bbbl
! - startiiarers
1 .y
loop
— createifodear Sifodear
[T
. aRunner:
. newin Miaken kg ke rRunner
< [) S =
T T v
This is H !
executed .
in the
stop '
method !
of ! Forthe activities performed by MIOServer, see
Bundle ! diagram "MIOSerwer".
Putivator. : '
H stop
D. .. === mmmmmmmm e emmm e ma I T T T
: !
| - stopilifarers
['
loop
stop
e * =

Figure 35: Server start-up

Server accepting connections

The SecureServer's job is to listen for incoming connections on the port by calling the
underlying ServerSocket's accept method. Channels belonging to the clients register
themselves on the server's Selector. The SelectionKey objects that hold this registration will
be used to identify clients.

Server sending and receiving messages

The SecureServer will check repeatedly whether there are read or write events on any of the
registered channels (this is accomplished by iterating through the selected SelectionKeys).

If there is a read event, i.e. a message arrives on a channel, the server fetches an available
WorkerRunner from the pool to do the task. First, the WorkerRunner opens the InputStream
associated with the channel belonging to the specified SelectionKey. The WorkerRunner can
then read the message in the form of a byte array from the stream. The Message object is
retrieved and decoded as has been described in the case of clients (i.e. relying on MessageUtil
and SCE). The decoded message is transferred to the WorkerRunner's Worker, which will
handle the Message.

04-06-2010 59 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Two cases are possible at this point:

e If the message requires an answer from the server, the worker does not retire to its
pool immediately. Instead, it sets its writeNext parameter indicating that it needs to
prepare an answer and send it to the client.

e Otherwise, the WorkerRunner is ready, it retires to the pool to become available for
use again if needed.

If a message needs to be sent to a client, an available WorkerRunner is fetched from the pool.
The associated Worker thread prepares the answer, which is then encoded, serialized and
written on the appropriate output stream. At this point the WorkerRunner may indicate that it
will not have to deal with this connection any more, so it can be closed. After the job is
accomplished, the WorkerRunner retires to the pool.

If there are no workers avaiable in the pool, the WorkerRunnerPool can create additional
workers up to the limit specified by the PoolConfig object.

04-06-2010 60 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

=d NIDServer

' _handlefmsg : byte [)

L igiiiteMext tboolean

'
b= izCloseRequired :boolean

initish : Selactionkeay)

SecureSener aFool : o r aRunner: Message Uil
WokerRunnerPool ofcerRunner
T T T
T i T
loop 7 ' ' '
1 H 1
! ! !
alt H i
\ accept E i
H 1 anSCE :
_______________________ ____________________-r_____________________:___________.:;bSecureCommunlcatlonEnglne
H 1
' '
initkeyAgreementfboolean) H - |
!] gl
dokeyfgreementPhaselbessage) :Meszage ' -
' ' rL_|
' ' -
H 1 '
1 . !
\ .]
alt ' ! H
' ' '
aRunner getifokerRunner WokerRunner H H !
=4 ' ' !
! ! : :
readizelector : Selector, sk: Selectionkey) byte | ! H
- '
1
mezsageFromSource(ch : Channel) :hessage -
-

decode(msy : Message) byte]

delnit

retire

 §

alt

aRunner getifoderRunner WokearRunner

TH

' E
write(selector : Selaectar, & : Selectionkey)

aWifekierRunner retires
to the poaol after which
it becomes available

again.

H prepare :byte [

b= isCIoseReq‘uired :boalean

initish : Selactionkeay)

izReadNext :boolean

e __E_

'
codedblzg= encode(msg @ byte [) :Meszage
[
=

messageTobest{codedhdzg | hMaszage, ch: Channeal)

delnit .

retire

[b==true]: closez : Selectionkey) "

Figure 36: Sending and receiving messages at the server

04-06-2010

61

Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Implementation view

The class diagram below shows the most

relationships.

important implementation classes and their

SecurekeyAgreementData
+ CLIENT_SESSIOMID: int= 1 freadOnh
SeourckieyAgreemant + SERVER_SESSIONID: int= 2 {readOnly}
+ CLIENT_AUTHORISATION. int= 3 freadOnh}
+ KA _CLIENT SESSIONID: int= 1 {readOnly} + SERVER_AUTHORISATION: int= 4 [readnly}
+ KA_SERVER_SESSIONID: int=2 [readOnh} + CLIENT_KEY: int=5 freadOnly}
+ KA CLIENT_AUTHORISATION: int=3 freadOnly} + SERVER_REQSIGHN: int=8 [readOnly}
+ KA_SERVER_AUTHORISATION: int=4 {readOnly} + CLIENT_SIGNATURE: int=7 {readOnh}
+ KA CLIENT KEY: int=5 {readOnly} + SERVER_SIGNATURE: int=& JreadOnhy}
SecureCommunioationEngine + |A_SERVER_REQSIGHN: int=6 jreadOnhy + CLIENT_HELLO: int=2{readOnly}
+ KA _CLIENT SIGNATURE: int=7 {readOnhy + SERVER_HELLO: int= 10 {readOinhj
" " — y + KA_SERVER_SIGNATURE: int= % [readdnl
: gzi:zg::::::S:::SQE:Q:::E?{"L%;?:x:nuSb:tiuntysr\::‘ﬂt\g“dmj + KA _CLIENT HELLO ml:DileadD{nlﬂ B + dataFromBytesnraylint, bite[) - SecureKeyAgreementData
> B (e S I d + KA_SERVEFR_HELLO: int= 10 freadOnky} + dataToBytednayiint, SecureKeyfgreemantData) : byte]]
4 Seoursl int ot N 3 frr-mmmmmmmm e % + KA KEYAGREEMENT ENDED: int=0freadOnh} f----- = SacmaKeVAgleema_ntDatao
' + KA_RANDOM_DATA_LENGTH: int= 16 {readOnly} + gethessageType(: int
+ decodetMessage) : byte[] N Typeling - void
+ encodeibyte[]) : Message " .
e e ot A + int, boslean,) + getSessionldd : int
+ doKeyAgreementPhase(Message) : Message * doPhasetMeszage] ; Mesage + setSessionld(ing) : veid
+ EygromoER): bedben + getSessionld(: int + astEeeurileval s int
+ getSecurityleveld) : int + setSecuritylevel(int) : woid
st + getOunPrivateley) : Privatekey + getRandomDatal) : byte]]
+ getOwnCerificateChaing : Certificate]] + setRandamData(byte]]) : waid
+ getPeerCedificateChaing : Cerificate]] + getCedificateChain : Cerificate]
SecureCommunication EngineConnection | mpl + getCommonkey) : Key + setCeificateChain(Certificste[]) : void
+ getC ter) | 1, + getEnenptediv) : byte]]
~ seclLewel: int + isEndedd: buclean + setEneyptedivibytel]) void
~ soc: Socket + getEnenptedie : byte]]
~ izt InputStream + setEncryptedkeybyte]]) : woid
~ o5 OutputStream + getSignatured) : byte]
~ sce: SecursCommunicationEngine + setSignatura(byte[]) : void
+ SecureCommunicationEngineCannectionlmpliint, String, int, String, String)
+ olose) void
+ sendhtessagebytel]) : woid
+ setHandlanHandler : void Runnable
“wior ker Runnar
Secure ServerFactoryimpl - ey, SecureC:) void
~) Securel i
- icati) vaid
+ t Sting, int, int, L ifotke F actory, PoolCanfia, boolean) : Gesuresener + WotkerRunnemiaker, Worke RunnerF ool
+ t ‘Shiing, int, int, . Wfotke F actory, boolean): SecureSener + starfy : woid
+ t Sting, int, int, L fotke IF astond © Securesener + readfGelector, Selectionke) vaid
+ t L int, i WorkerF actory, PoolContig, boolean) : $ecure Semrer + uwiteSelector, SelectionKey) : void
+ t int, L WokerF actory, boolean) : Gesuresemer + stop(r:weid
+ t L int, L WorkerF actory) : SecureSener + wnd:vaid
wtastonys
| -pool
Runazble Wior ker Runner::or ker Runner Pool
SecureServerlmpl
PoO | ake rReunne P aol(P o ol Canig, e kerF actan)
+ L int, 0], boolean) + getiioderRunner : WokeRunner
+ starf) : woid - retumifoderRun nerifake Runner : void
+ stop() : void ~ startiorkers) : void
+ rungy: void - stoplforkers) : void

Figure 37 Implementation classes

1.1.1.3. Authentication and Authorization framework

Logical view

The Authentication and Authorization Framework can be divided into the following
subsystems:

e CVIS Unit — an in-car, nomadic or road-side unit.

® Host Management Centre (HMC) — operates the back-end infrastructure that is
required for distributed authentication and authorization.

¢ Service Centre — provides the services that CVIS Units can consume.

04-06-2010 62 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

deployrent A%

Hast Management Centre E El
Idertity Prowider O M FOF
- izsuefss rt?Q{s
logout &
o aflows =
[=1
L e | alfy 8]
Control Authentication Broker = —F | | Attribte Aucthority | | Assertion Authority x
i = _) makefrecision
LEq7 legin z
wfl v = \\ :
.

wexecution environments =

A g

\ Sdrvice Centre
5,
\ :

CYI5 Unit [0S Gi framework] EF
8] -
SCE cti N
connection CFindlE s i El
ClientAASampleloginConfiguration Service
sefujceblpthod
\
ClientSenicaBroker '
7] ;
whundlew ! aflom
CliantAs, f 2
taflawys
E E callSenvice
SecureCornmuni cation SecurityModula '.
+SCE cennzstion ServiceBroker
i
wfl o :
I_D_g_lg_______________. E
ClientAuthenticationBiokar =« . _ o sbundles
afloms " " m e S Client application
logout S

Figure 38: Implementation classes
The above figure gives an overview of the Authentication and Authorization system using a
deployment diagram. The following components constitute the AA framework:
¢ (ClientAA bundle (at the CVIS Unit),
¢ ControlAuthenticationBroker (at the Host Management Centre), and
e ServiceBroker (at the Service Centre).

These components provide infrastructural operations such as Secure Communication between
the communicating nodes (CVIS Unit-HMC and CVIS Unit—Service Centre), transferring
clients' login/logout requests, and, mainly, transparently delegates service invocations to
remote services as if they were local operations. They also ensure that any application-level
errors that occurs at the remote node is directed back to the caller.

Service providers need to implement
® the service itself (at the Service Centre) as a Web Service, and
e the client application bundle (at the CVIS Unit)
e Identity providers need to implement

e an identity provider solution,

04-06-2010 63 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

e aclass that implements the IdentityProvider interface, and

e a bundle containing a login configuration (in the picture it is depicted by
ClientAASampleLoginConfiguration).

However, the entities Identity Provider, PDP and the Service itself are out of the scope of this
documentation.

A CVIS Unit contains the following components:

Client

The person, application etc. that wants to access a service and therefore needs
authentication and authorization. It will be referred to as Subject.

ClientAuthenticationBroker

The only entity that deals with any kind of authentication activity at the CVIS Unit. It
is responsible for local JAAS login and the initiation of remote login. It enables the
client to access the authentication subsystem at the HMC. The
ClientAuthenticationBroker and the ControlAuthenticationBroker at the HMC
communicate over a SecureCommunication connection. The
ClientAuthenticationBroker can also be used to get a Subject to perform JAAS
authorization activities on it.

LoginConfiguration

A LoginConfiguration is an entity which is created by the implementer of a Login
module. A login configuration defines which login modules need to be used, which
callback handlers need to be executed and identifies a security module provider
through which implementers may serve their own security module implementation.
ClientAuthenticationBroker is backed with a Map of LoginConfigurations where the
key is an application name that identifies the associated login configuration.

Client application

Service Providers are required to ship client applications with their services which
provide information necessary to access remote services. However, the way in which
the form, storage, retrieval etc. of such information is realized is left open to
implementers. Client applications call remote services using SOAP messages
indirectly, through ClientServiceBroker and ServiceBroker. These brokers
communicate with each other through a Secure Connection.

Client applications communicate directly only with the client-side brokers. For local
authorization activities they may get a JAAS Subject instance from the
ClientAuthenticationBroker, while requests for remote services are handled by the
ClientServiceBroker.

ClientServiceBroker

Its role is to check whether the Subject initiating the service call is properly
authenticated and if so, it delegates the client's request to the ServiceBroker that
resides at the Service Centre. The ClientServiceBroker and the ServiceBroker use a
SecureCommunication connection to exchange SOAP messages.

04-06-2010 64 Version 1.0

P

cv S CVIS Architecture and
System Specifications

A Host Management Center contains the following components:

ControlAuthenticationBroker

The only entity that deals with any kind of authentication activity at the HMC. It is
responsible for remote login at the Identity Provider. On the one hand, it
communicates with the ClientAuthenticationBroker through SecureCommunication.
Therefore, it hosts a SecureServer instance that handles the communication. Identity
Providers Communication between the ControlAuthenticationBroker and the
AssertionAuthority takes the form of XML documents, preferably SAML.

Identity Provider

Creates, maintains and manages identity information. Identity Providers should also
provide a class (running at the HMC side) that implements an interface
(IdentityProvider) which handles login/logout requests coming from the client through
ControlAuthenticationBroker. In this way, the responsibility of accessing an Identity
Provider and the way this class and Identity Provider communicate each other are
outside the scope of the Authentication and Authorization framework.

Apart from that, there might by further entities at the HMC that play important roles in the
authorization process. Since, however, they do not communicate directly with any of our
interfaces, and are usually obtained from third party providers, their specification is out of the
scope of this documentation. For the sake of completeness, these are the Assertion Authority,
the Attribute Authority, the PAP, the PIP, the PDP, and the Policy Repository.

A Service Center contains the following components:

Service

An arbitrary security-enabled service, given by a Service Provider.

ServiceBroker

PEP

The ServiceBroker's task is to receive the client's request for a service through a
SecureCommunication connection, and delegate the information necessary for
authorization to the PEP.

The role of this system entity is to enforce the decision made by the PDP. In other
words, it should guarantee that the service it “protects” cannot be reached without
proper authorization. Service invocations are intercepted by a filter which plays the
role of PEP: it may turn to the Identity Provider to assure that the invoker is logged in
and then turns to the PDP to make an authorization decision.

04-06-2010 65 Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

Main interfaces

class Af class diagram /

winterfaces
waveidenfify Pravider

+ login(Susyect) : Shing
+ logoutShieg) D hoolesn

epuestfesnotedutrentication () Shirg
getsuffect]) | Supject
getSecuityfodule) Secudtifoo e

impl::CortrolAuthenti cationBroker sc::ServiceBroker
{leaf} fleaf}
+ ControlAuthenticationBrokenProperizs) + SenriceBroken)
+ star(; void + sta(Properies): woid
+ stop(): woid + stopl:woid
wintefacex

clienf CliertiufhenticafionBroker
+ logiT (Shieg) D ovoid winterfaces
+ logouty) s oid clierf:ClierfServiceBroker
+ getdoplicationiiase) @ Shimg
+ chechRemote Authentication) : Stimg + ecallZendce (S0AFkssage, et SocketAddess, Siing, Sking) @ SOAP%ssage
5
i
£

Figure 39 Authentication and Authorization class diagram

In the above figure, ControlAuthenticationBroker and ServiceBroker are classes which
provide services (methods) to other brokers only, in the sense that they are not part of the
system's external API.

Process view

The following scenarios can occur within the Authentication and Authorization framework:
¢ Single Sign-On (login)
¢ Single Sign-Out (logout)
e Service invocation

These are elaborated below.

Authentication (login)

Authentication happens in two phases:

1. Local login — the client is identified locally and may request access to local
services. Local authentication and authorization make use of JAAS.

2. Remote login — the client logs in at a HMC. After successful remote login it can
request access to remote services.

04-06-2010 66 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The Authentication and Authorization framework realizes the Single Sign-On concept: a
client has to log in only once, and later its different identities are handled centrally at HMCs.
A JAAS Subject represents the client, while the Principals that make up a Subject stand for
the various identities of the client.

First local login takes place based on standard JAAS methods. The client that wants to be
authenticated initiates the login procedure at the ClientAuthenticationBroker, calling its login
method. This method has an application name (a string) as a parameter, which identifies an
associated login configuration defining which LoginModules need to be used for
authentication.

The ClientAuthenticationBroker instantiates a JAAS LoginContext object, whose login
method is responsible for gathering the client's credentials (passwords, keys, biometric data
etc.) and creating a Subject instance, which will contain all the identities of the client. After
the ClientAuthenticationBroker retrieves the Subject from the LoginContext, it will store it.
Local authentication ends at this stage. The only case when local login is not successful is
when the client cannot produce the necessary credentials.

The precondition of remote login is obviously that the client be locally authenticated. The
ClientAuthenticationBroker starts the remote login procedure by calling the
ControlAuthenticationBroker's login(Subject) method, where Subject refers to the newly
authenticated client. The Subject is serialized to become transferable through a
SecureCommunication connection. As a consequence, LoginModule implementers must take
care to use credentials that are serializable, otherwise not all the required information will
arrive at the HMC. As a next step, the Control AuthenticationBroker requests the authorization
of the Subject at the Identity Provider. To do this, it a class implementing the interface
IdentityProvider needs to be created. This class has the responsibility of knowing both the
location of the deployed Identity Manager application and the way how the communication
with it should be managed. The Authentication and Authorization framework does not have
any constraints on this issue, however, we advice the use of some standard solutions,
preferably SAML messages. The IdP then processes the (SAML) request and checks whether
the credentials retrieved are appropriate. If there are no problems with the credentials, the IdP
authenticates the user by creating an Assertion, an ID of which it sends back as an SAML
response to the ControlAuthenticationBroker. Otherwise, it issues an SAML response about
the failure meaning the broker will get null value as assertion ID. After this point the assertion
ID (or null) is sent back to the client. Finally, the ClientAuthenticationBroker stores the ID
with the Subject. A RemoteAuthenticationFailedException signals if null has been received.

04-06-2010 67 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

=d Authentication
Client HMiC
g :ClientAuthenticationBroker, :ControlAuthenticationBroker dldentityProvider
A
Client
i
login(String) E le: LoginContext
=
-------- ==
laging) : “Subject
------- e
remotelogind) !
b login(5ubjest) :String e
E ; e
login{Subject) :String
il]
opt crea{eAsserlion/
[eredentials ale [OK]
cre atefszartion)
E
String (Aszetionll
et s o
' o o
String (Aszertion|D) |
T R R -
e ' o
L L ' |

Figure 40 Authentication sequence diagram

Authentication (logout)

The client starts the logout procedure by calling the ClientAuthenticationBroker's logout
method. The ClientAuthenticationBroker then retrieves the assertion ID related to the Subject,
and initiates its remote logout at the HMC on the basis of the ID. This is done by using SOAP
messages. The ControlAuthenticationBroker invokes the logout(String) method of the
IdentityProvider interface, where the logic of single sign-out is played with the underlying IdP
implementation. This communication is out of the scope of this architecture but usage of
SAML is preferred. The last step of the logout is when the ClientAuthenticationBroker
removes the Subject from its user information repository.

04-06-2010 68

Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

=d Logout
Client HMEC
2 :ClientéuthenticationBroker :ContralAuthe nticationBroker JdentityProvider
A
Client
I lagout ' ‘ ;
- : ;
remotelogout : :
lagoutiassid : AsserionlD) logoutString) :boalean
baalean
.g_.\-: _________________________ 1
ek

Figure 41 Logout sequence diagram

Service invocation

In order to be able to access a service, the client (Subject) must have the required
authorization. Local authorization is completely based on JAAS, therefore the details of this
process are out of the scope of this document. When the client wants to access a remote
service, it calls the appropriate method of the ServiceProxy that was provided with the
service. The ServiceProxy in turn calls the callService method of the ClientServiceBroker,
providing it with a SOAP request, the address of the SCE which will handle the message at
the Service Centre, and a string describing the location of the service (a URI). Before the
ClientServiceBroker delegates the request to the Service Centre, it must check whether the
Subject has been authenticated remotely. This procedure involves requesting the remote login
of the Subject if no assertion ID is associated with it (i.e.he/she is authenticated only locally).
If remote authentication fails, the Subject is not authorized to access the remote service.

In the case of successful remote authentication, the ClientServiceBroker delegates the service
request to the ServiceBroker, which resides at the Service Centre. From this point onwards the
description is not normative, as the entities in question (PEP, PDP and Service Provider) are
out of the scope of the documentation. The ServiceBroker asks the PEP to invoke the service
if the Subject has the required privileges to access the resources in question. The PEP orders
the PDP to make the authorization decision. If the PDP permits the Subject to access the
service, it will be invoked with the given SOAP request, and return the result of the service to
the ServiceBroker. If the PDP does not permit access, then the PEP will wrap the negative
answer into a SOAP message and return it to the ServiceBroker. The SOAP response is
handed back to the ServiceProxy (through ClientServiceBroker).

04-06-2010 69 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

=d Service Invocation

Client

Senvice Centre

Ea tSenviceP roxy
A
Client
'

:ClientSeniceBroker

:ClientAuthenticationBroker

:SenviceBroker

:PEF :Sernvice :PDF

Fre-condition:
Successful loeal login

' ozarvicebethod(

callSenvice(S0OAP Request, InetSocketAddress, String, String, int) :S0AP Response

'
chedckR emote Authentication) :String

opt notAuthin

[entity i niot authenticated
requestRemoteAuthenti

remote ly]

cationd) :Strii'\g

send the S0AP invocation through SCE :S0A

F Response

PR

SOAP Response

Sy

P
..-|

senvice invocation(S0AP Request)
P
o=

enforce decizsion

request decizion

decision

k §

1
H make decizion
1

alt decision /

[dei|=i

==Farmit]

[oth

SOAP Response

oreate SOAP Respoﬁse of deny

service invocation(S0AF Request) 1
L H

executefpplicationLogicl

SOAFP Responze

=

Figure 42 Service invocation sequence diagram

04-06-2010

70

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

3.4 Broadcast

The "Broadcast" facility is based on the communication functionality which is specified in
D.COMM.3.2. FOAM D3.2 describes how this functionality is made available for CVIS
applications in JAVA/OSGi.

3.4.1 Overview

The data broadcast facility enables:

a service application to broadcast data,

a service application to subscribe to broadcast data.
The data broadcast service thus consists of two parts, the broadcasting side called, publisher,
and the receiving side called subscriber.

3.4.2 Application programming interface

The data broadcast service consists of two main interface classes. DataBroadcastPublisher and
DataBroadcastSubscriber. There is also a BroadcastData utility class that encapsulates the
broadcast data and its characteristics.

cd DataBroadcastPublisher /
«interface»
BroadcastData
+ getPriority() : int
+ getContentlD) : String
+ getExpiry() : Date
+ getData() : byte[]
A

// \\\

7/ N

// \\

«interface» «interface»
DataBroadcastPublisher DataBroadcastSubscriber
+ getBroadcasData() : BroadcastData + dataReceived(BroadcasData) : void

Figure 43: Information model for broadcast facility

The attributes of the BroadcastData, i.e. ContentID, priority, expiry are defined by CALM.
Please refer to the COMM 3.2 deliverable for a complete description. This applies to the
encoding of the data as well. From a FOAM perspective the data is regarded as an arbitrary
array of bytes.

3.4.3 Information model

The broadcasted data is always identified by a ContentID as defined in the CALM standard
for broadcast data. The broadcasted data has also an expiry and priority associated with it.
Expiry may be time and/or location, i.e. the broadcasted data is only valid in a certain region.

04-06-2010 71 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

3.4.4 Interaction model

The sequence diagram below gives an overview of the entire flow of data. To the far right is
an application that desires to broadcast data and to the far left is another application that
would like to receive the same data by registering as a data broadcast subscriber.

physical implementation acting as a consumer physical implementation acting as a supplier
Application broadcast COMM COMM broadcast Application
facility broadcast broadcast pool / facility
receiver sender

publish(contentID,
content, priority,
expiry (time/location))

handover(...)

assemble a
——Dbroadcast Frame

subscribe(contentID,
contentHandler)

o g

broadcast(ID, Time,
Position,

ContentID, data....)

provideReweivedData(ID,
Time, Position,
ContentlD,data)

common, standardised
data model here (per
channel)!

(})ntenthandlerCaIl(datad
=

Figure 44: Interaction for broadcast data

3.4.5 High level composite architecture

Figure 44 identifies one main architectural component of the facility towards applications:
The broadcast facility itself.

3.5 Connection manager

The connection manager API will provide access to CALM functionality through an 'open’
call, in which the quality of the requested service can be defined using a set of parameters.
Further details can be found in D.FOAM.3.2 chapter 8.

The connection manager may automatically choose the connection in order to use the most
efficient communication mechanism to transport the messages from the sender to the receiver.

Choosing between available connection factories can be done automatically in the connector
based on service properties depending on the chosen policy.

3.5.1 Overview

The IO connector service from the OSGi specification matches the connection manager
requirements very well.

04-06-2010 72 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The sub-projects may use the standard connection factories defined by the OSGi specification
for their communication needs and are encouraged to provide connection factory services
where specific protocols are needed.

3.5.2 Application programming interface

Javax.microedition.io.Connection

Type: public abstract «interface» Interface
Package: connection manager

An existing standard interface:

It is extended by HttpConnection, DatagramConnection, InputConnection, OutputConnection
etc.

Javax.microedition.io.Connection Interfaces

Method Type Notes

close () public: void

org.osgi.service.io.ConnectionFactory

Type: public abstract «interface» Interface

Package: connection manager

An existing interface:

See J2ME connector and OSGi Release 4 ConnectionFactory

org.osgi.service.io.ConnectionFactory Interfaces

Method Type Notes
close () public: void
getScheme () public: String
createConnection public: param: uri [string - in]
(string, int, boolean, Javax.microedition.i . . .
.. . param: mode [int - in]
Dictionary) 0.Connection
param: timeouts [boolean - in]
param: options [Dictionary - in |
open () public: void MUST be called by the implementation of the

connector service before any create-Connection
method is called. It MAY be used to create
resources that are need for the correct operation
of this package.

04-06-2010 73 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

org.osgi.service.io.ConnectorService

Type:
Package:

connection manager

Existing interface from OSGi R4:

public abstract «interface» Interface

org.osgi.service.io.ConnectorService Interfaces

Method

Type

Notes

open (String)

public:
Javax.microe
dition.io.Conn
ection

param: address [String - in]

open (int, String)

public:
Javax.microe
dition.io.Conn
ection

param: mode [int - in]
READ, WRITE, READ_WRITE

param: address [String - in]
The address of the destination, in URI format

open (boolean, int,
String)

public:
Javax.microe
dition.io.Conn
ection

param: timeout [boolean - in]

param: mode [int - in]
READ, WRITE, READ_WRITE

param: address [String - in]
The address of the connection, in URI format

public: param: address [String - in]
openDatalnputStrea | Java.io.Dataln | The address of the destination, in URI format.
m (String) putStream
public: param: address [String - in]
openDataOutputStre | Java.io.DataO | The address of the destination, in URI format.
am (String) utputStream
openlnputStream public: param: address [String - in]
(String) Java.io.InputS | The address of the destination, in URI format.
tream
openOutputStream | public: param: address [String - in]
(String) Java.io.Outpu | The address of the destination, in URI format.
tStream

04-06-2010

74 Version 1.0

CVIS Architecture and
System Specifications

«"CVIS

org.cvisproject.comm

Type: public abstract «interface» Interface
Extends: Connection.
Package: calm

This interface provides methods for creating the objects needed for a communication utilizing
the CALM technology.

CALMConnection Interfaces

Method Type Notes

getParameters public: Returns the QoS parameters associated with this
Dictionary connection.

setParameters void param: dict [Dictionary - in |

3.5.3 Information model

Standard IO connector service

The following figure shows a class diagram for the standard connection manager module. The
connector service is the central place where an application can obtain a connection. This
connector service must be provided by the OSGi framework or by a system application
running on the OSGi framework.

classio

winterfaces
ionCorrection

+ cloze] . woid

winterfaces winterfaces

Conrecforfervice

+

READ: int= Connector. READ freadOnly}
WRITE: int= Connectar WRITE {readOnly}
READ WRITE: int= Connector.READ WRITE {readOnly}

+ o+ o+ o+ o+ + o+

oper(Stirg) | Commection

aaer(Stirg, A7) - Correction

oaer(Stirg, fnd, Aoolear) | Cormection
ageritout Stean (Sting) [inoutStean
operlataiout Stean (Shing) | Dataimput Steam
oaen Cwtowt Steaa (Sting) - Oulput Steaam
ogerlztz Culpwt Steaw (Shirg) - Datz Cuiput Sheaan

ConmecfionFaciony

+

10 _SCHEME: String ="io.scheme" freadOnly}

+

cregte Cormection (Shimg, int, oolean) @ Cornection

Figure 45: Class diagram for connection manager

04-06-2010 75

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

SOAP connection factory

The SOAP connection factory extension of the connection manager is an interface that adds
priorities management and control over the connectivity to Internet using the different
adapters - GPRS, WiFi etc. based on these priorities.

The extension consists of two parts: an interface for SOAP conformant with the
ConnectionFactory interfaces described in the previous chapter; and a separate interface for
an AdapterManager that is responsible for the management of network adapters and modems.

The SOAP factory interface is a thin abstraction layer that allows the creation of a SOAP
message and its sending. No queuing will be done in the soapconnector - if the message
cannot be sent then it must be returned synchronously to the calling application and it may
have a queue inside to save it and try again later.

In general the SOAP connection factory implementation provides the functionality to send
messages, block low-priority messages if a high-priority message has to be sent, and request
connecting over a fixed network adapter as opposed to the automatic connecting that the
operating system does when you simply open a socket.

class soap
«interfaces sinterfaces
foConreciiarFaciony o Conrecion
+ 10_SCHEME: Sting="iozcheme" fraadOnh L _________________________________3 e+ close() :woid

+ comegle Conmection(Shimg, int, boolean) @ Cormeckion

winterfaces winterfaces
SOAPConrrecfionFaciony S0APConmection
+ FRIORITY_FROFP_NAME: String = "priarity" + cregteReyuestOfect]) : SOAFReguest
+ HIGH FRIORITY: int=3 + emgtefeguestOyect Sting, Sting, Vector, Fogedies, Shing) | S0AFRequest
+ HORMAL PRIORITY: int=2 + oeak ADiect]) : S04, s
+ LOW _PRIORITY: int=1 + eomglePaeneterOiect(Shing, Class, Olfect, Sting) : SOAPFPa@Emeter
+ SO0AP SCHEME: String ="soap"

A
+requestObject I;}

«interfaces A

SOAPRequest +parameterDbjec‘t:°ll‘
+ gedTametOjecklLRN) @ Shing sinterfacen
& seé?argetoglecﬂ,ﬁl’fs?r.mgj : uoid SOAPEararefer
+ geilfethodiizane]) @ Shing
+ sedlfethodfzme (Simg) o void + setliame (Shimg) o uoid
+ getPaans] @ Veckar + getilame) : Shhng
+ sedtParaas(lecton) o void + setfvpetass) ol
+ geltreaderdAitibutes(Popedies + getlTyoe() . Class
+: i ferAbii bute s (Fmped : uoid + setlzlueOiect) : void
+ gedEncoding Shele © Shirg + getlalue : Obect
+ sedEncoding Style(Sting) woid + setEncoding Style LIRSk mg) @ void
+ setlompression Use hoolean) | vaid + getEmcoding Shle DR - Stimg
+ mgisterTypelizoping (et woid 4?
+ inwoke(UIRL, Sting) | SOAPRespomnse +retumnValue:

3y

«interfaces «interfaces
S0APResnonse Fiaiie S0APFauliMessage
au
+ getRetumValue() | SOAFFa@meter f---------- T+ getFauitCode]) : Sting
+ fRultRetumed () hoolean + getFaultShing(| Shing
+ getFault] S04FFu ke ssage

Figure 46: A SOAP extension of the ConnectionFactory

04-06-2010 76 Version 1.0

«"CVIS

CVIS Architecture and

Sy

stem Specifications

3.5.4 Interaction model

The following sequence diagram shows the steps when an application needs to open a

connection:

sd An application getting a connection /

Application OSGi Framework «interface»

org.osgi.service.io.ConnectorService|

ConnectionFactory
Application

1 h
getService(Connector service)

searches for a suitable
ConnectionFactory in
the service registry’

retumns the

ConnectionFactory————P»

createConnection(String uri,
int mode, boolean timeout)

returns a Connection object

D
Application
implémenting an
org.opgi.service.—ierGennectior
e.g. for handling the
"HTTP" scheme

R

R oy

Figure 47 Application getting a connection

Getting a connection is done in two steps: first the application acquires the connector service
from the service registry, and then asks the connector service for a connection object. Once a
connection object is obtained, its methods will be used for sending messages during the

lifecycle of the application.

04-06-2010

77

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Sending a SOAP message
sd SendingSOAPMessage J
Application 0SGi Framewor i i i i i GPRS Adapter HTTP Operating System
& ice| [SOAPC: y| [soarc i SOAPReq
open(URL with soap header) o
.
searches for a milabieé)ﬁoﬁnpﬁegl’iggfggt’o’ry \r‘\ the service registry |
retums the SOAPConnectionFactory
L ‘ !
createConnection("soap:/priority=2")
create
i
retum the SOAPConr object B
L ‘ [N
: createRequestObject(String targetObjectURI, String methodName, Vector
: params,Properti String i nt priority) .
create
jgu}
return SOAP request object
S S P request oblect
invoke(URL soapServerURL, String SOAPActionURI)
isConnected .
false
e false
if high priority
connect()
connect -
S
convert to HTTP message and send
openSocket
send message over GPRS
retumn response \\J
PP £
i retum SOAPResponse!
) U L
' T

Figure 48: Sending a SOAP message

3.5.5 High level composite architecture

See chapter in "Information Model". Components such as ConnectionFactory and
ConnectorService are included in the descriptions.

3.6 Human machine interface

The CVIS project will not by itself develop a reference HMI architecture for this purpose, nor
will it develop a reference implementation. The reason for this is that such architecture is
developed by the "Adaptlve Driver-vehicle interfacE" (AIDE)" integrated project [AIDE-1], a
project in which all major vehicle OEMs in Europe are participating. An overview of this
architecture is contained in Annex 4. This overview serves as a guideline for deployment of
CVIS units in the real world.

However, for the CVIS project, FOAM will provide a non-normative application manager
that will provide a basic default HMI to the end user. It is based on Java AWT and is
completely skin-able. This shall thus not be seen as HMI reference architecture and is not
considered part of the CVIS specification as such.

04-06-2010 78 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

3.6.1 Overview

In this HMI chapter an example for the usage of the HMI is described.

The following sections show how an application manager facility is implemented.
3.6.2 Application programming interface

The API is provided through JAV A "Abstract Windowing Toolkit" (AWT).

3.6.3 Information model

Here the information model of the example facility - the application manager is described.

The service application shall use the ViewListener interface to inform the ApplicationView
on updates and to request focus.

cd ApplicationManager /
«interface» «interface»
ViewListener ApplicationView

+ viewChanged(ViewEvent) : void + APPLICATIONID: String

activate(int, int) : java.awt.Container
deactive() : void

getlcon() : jawa.awt.Image

getTitle() : String

getViewld() : String
*tResources(Resources) : String
setViewlLigener(ViewListener) : void

«class»
ViewEvent

+ + + + + + +

ICON_CHANGED: int
REQUEST_FOCUS: int

+ +

+

getViewld() : String
getEvent() : int

+

Figure 49: Application manager - example information model

3.6.4 High level composite architecture

The picture below shows the application manager inside a CVIS host. The HMI in itself is not
considered part of the service platform. It uses the management agent for end-user driven
provisioning.

04-06-2010 79 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

cd ApplicationManager
CVIS Host E'
. l
Service Platform
Service E' L. =) HVI E'
Application
Application
Manager
End User
Managment
Agent

Figure 50: HMI high level composite architecture

3.7 Local device tree

The primary objective of the "Local Device Tree" (LDT) is to provide access to device related
status information like (in the case of a vehicle) vehicle speed, fog lamp status, GPS position
etc.

In addition the LDT will allow:
To manage the device database (discover, expand or delete database elements) locally.

Optional: To manage or access the device database from a remote server by using the
OMA device management specification.

The local device tree is described in detail in D.FOAM.3.2 chapter 13.

04-06-2010 80 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

3.7.1 Overview

The use cases identified for the LDT API are:

v/

Remote Client

™~

Local Vehicle
Information Provider

S

introspect status

elements

get status element
value

request status
element value
notification

execute status
command

Vehicle
Interface

manage status
elements

/

Local Client

provisioning

Figure 51: Device tree use cases

04-06-2010

81

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

3.7.2 Application programming interface

The API for the LDT is specified in Figure 52. Be aware of the encapsulation of data in cell-
objects, shown in Figure 63.

class LOT Admin Layer

winterfacen winterfaces
LOTL isferer LOTAd i
+ CURREHWTHODE_LISTEHWER: int=0 freadOnly} + gethiodeStirgl}, Stirg) LOThiode
+ SUBNODES LISTEMER: int= 1 {readOnly} + getFamatloded DTiode, Shing) : LD Thiode

+ CURREWT_AMD SUBNODES LISTEMER: int=2 freadOnly}

+ podeddded (L0 Tode) [void
+ godeleleted O Tode) & woid
+ podelpdsted LOMode) | void

I

Y
«interfaceax
LD TNode

Fdd' GrildNode (Sing) © LOTiode

Fod ChildWod'e (SHing, Lomg) @ LOTode

Fad GhildNode (Sting, Lomg [- LOTode

Fdd GhildNode (Sting, Lomg, Long [0 LOToo'e
Fdd Cell ValvelistereniOTiode Valuvelistemer) vofd
canAdd) : hoolean

canelete (] @ poolean

canExes) ; hoolezn

eanAeplaee) hoolean

delete Ghitdtode (Stimg) o void
delete Al ChildModes() ©woid

executeode Conmand (Remotelfethod Gall) & wofd
getlel : Call

hasCell @ hoolean

getChildtiode (Shing) @ LOTode
getChildmatizmes]) @ Shimgj

getChildtodes] - LOTooe 7

getiizme () ; Shimg
getdbsolutefodeFath Az Sting) - Shing
getdbmoluteNodeath () 0 Shima)}

getShing Valve () | Shing

getSypoored Commandame s @ Shing)
getCommand (Shimg) @ Remobeldthod Cell

izteaf() - hoolean

e el Valvel istere L0 Tiode Valwed isterer) & uoid
Fdd Vehiclefodelisterenl O T isterer, int) ; vodd
Emone MekicleModeliste renl 0T istemer) & woid

Celliistensr
winterfaces
LOTHade i aluel isferar

+ teefiode Value Chamged (Sting [LOTode, Cedl) @ vodd

zintarfaces
LOTRlvgin

ArgnchRootPath Collision () & wodd
getBranchRootPath) @ Shimg
manFged@nch L0 Tiode) & woid
getCelid () Lomg

+ o+ o+ o+

o F Rtk R Fh o FF o FF o FEF o+ o+

Figure 52: Class diagram LDT admin layer

04-06-2010 82 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

class Data Prowider Layer /

winterfaces winterfaces
CellProvider CoreHardler

getSuaporhed Callid e - Lomg
eguestiCel flong) - Gl

Fod CelllistenenCelllistenern, Lorg) & vodd
e e CelllistereniCelllisterer, Lomg) - void eguestResoteldthod Lorg) - Remoteldethod Call
execute Memotelfethod (Reamotelfethod Cell) - void execyte Remnotelletiod CallRemole fetvod Sell) - void
celli Collision (Lorg) & wodid 5

Fdd CelllistereniCelllisterer, Lorg) woid
epo e Celllisterenlellisterer, Lomg) | woid
e stCell fLomg) ; Call

+ + + + +

o+ o+ o+

PrREEEEERE
'l::}:

winterfaces
cells Cell

CELL_TvPE_DATA: int=0 freadOnly} Cell Client
CELL_TwFE_REMOTE_METHOD: int=1 {readOnly} T

CELL_TYPE STRIMG DESCRIPTOR: int=2 {readOnhi
CELL_TYFE_COMPLEX: int=3 [readOnly}

CELL TwFPE_STATE: int=4 [readOnly} + fandie Call(Cell) © waid

+ getCelllistererrilten]) : CelllisteranFilter

e m e cellsCelllisfener

+ + + + +

getlelliD) Lorg

getlell Tyoe() it

get Nine Stamo() - lomg
melegze Call iCell Client) & waid
getiiame () : Siimg

geitlell Sting Value () - Shing

+ + + + + +

Figure 53: Class diagram data provider layer

3.7.3 Information model

Main elements are:
A cell is an abstract basic class for providing metadata about a property value..
A data cell contains the physical value of the property data.

The complex cell is a container for data cells, i.e. each of the elements part of the complex
data, is represented by a cell.

String descriptor represents a string status value. Such a status value could be the VIN, or
registration number of a vehicle.

04-06-2010 83 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

class cells
TiETaue winterfaces
o i
Cell
ConmplesCell =
+ CELL TwPE_DATA: int=0 {readOnly}
+ getCell(Siing) @ Gell {"={+ CELL TYPE REMOTE METHOD: int= 1 freadOnly}
+ getdaia CellWames)) Sirgf] + CELL_TYPE_STRING _DESCRIPTOR: int=2 {readOnly}
+ getCelljmt) : Gell + CELL_TYPE_COMPLEX: int= 2 [readOnlhy]
+ CELL_TWFE_STATE: int= 4 freadOnhy}
+ getCeliD Lomg
7 + geiCeNTyoe . int
loclnterfacel» D} + et e Stamo @long
StringDescriptor + mlegseCalliCel Client) - vaid
+ getStiog) - Shimg + getlizme) Shimg
+ geiCel Sting Kalue) : Sting
winterfaces
Dafacel winterfaces winterfaces
RemofeMefhadCeal SfzfebafaCell
+ getFhysica! Value() dowhle
+ el ; Linit + getRemobefethod Amuaents) @ Obect(] + getlzlvedsShing] o Shieg
+ getlislveAsiiessumaent]) | Messmamrent + metRemotelfthod Ameaemtz(O8ect [o void + getlFlee imt
+ getlizlvedsState] @ State

Figure 54: Local device tree information model

04-06-2010 84 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

RemoteManager | _ Remote Protocol Adapter
OSGI OMA
@---

Device
RRIITED - Management
(} ————— DMTAdmin [— — — — 43(o Tree

DmtDataPlugin DmtExecPlugin
|

% VehicleDataPlugin VehicleExecPlugin

_——] = = T T e e TEE =

R - - - !

VehicleAdmin
|

Vehicle admin

VehicleTree
[= T TR TEEs T % _____ |
| |

@ |

VehicleTFeePlugin . = .
VehicleTreePlugin

VehicleTreePlugin
% GPS Tree Plugin % Manufacture Data Tree Plugin % Bordcomputer Tree Plugin

Data
é providers

CoreHandler

CAN data provider MOST Data provider
Core Handler L/
Transport
e e S S e S SO e SO P S SO e SO S | S
MOST Bus

Figure 55: Entities for the interface to device sensors

04-06-2010 85 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

4 Domain facilities

This section describes the set of domain facilities provided in CVIS. While the basic facilities
described in the previous section features basic execution management and communication,
the domain facilities provide common ITS domain services. The domain facilities may be
available in a CVIS host. The availability is dependent of its relevance, since domain facilities
are useful for some applications but not for all. Domain facilities can be downloaded to be
available on demand. The following domain facilities are specified:

Position and map matching; which provides position information that may be provided
as a map position (map matching)

Infrastructure position; which provides the position of CVIS nodes by localizing them
using the wireless sensor network

Map provision; which supply maps and updates of maps

Location reference; which provides encoding and decoding of Agora-C location
references

Geo-spatial platform (GSP); which provides GIS functionality such as "Geo-code", i.e. to
convert an address to X,Y coordinates, "MapDisplay & Route", i.e. to calculate the optimal
route from a single location to one or several destinations. GSP also facilitate provision of
traffic data to the GSP from external sources. This traffic data may then be used to enhance
the response provided by "MapDisplay & Route" requests

Cooperative traffic information; which provides access to traffic status information
which is determined in a cooperative way.

Billing and payment; which provides common facilities for billing and payment. The
billing and payment facilities are completely covered by the GST S-PAY [GST.S-
PAY.3.2], and are not described any further in this document.

Each of the domain facilities is presented in the next sub-sections applying the following
viewpoints:
Overview,; which provides an overall introduction to the facility

Application programming interface; which describes the API accessible for the users of
the facility (typically applications, but a facility may also be used by other facilities)

Information model; which specifies the facility from an information perspective
describing information objects of the facility domain.

Interaction model; which specifies main usage scenarios associated with the facility.

High level composite architecture; which specifies the main components constituting the
facility (this perspective is optional, since some facilities consists of only one main
component).

This document (D.CVIS.3.4) includes specifications of interest for the users of the facilities.
Further details as well as the internal design are specified in the corresponding D.SP.3.2
documents.

04-06-2010 86 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

4.1 Position and map matching

This sub-section is based on the D.POMA.3.2 specification document. In this document the
focus is on the external interfaces. For discussions of the internal architecture of the position
and map matching we refer to the D.POMA.3.2 specification document.

4.1.1 Overview
The position and map matching facility provides position information, the position may be

provided as a map position (map matching). The use case model of the position and map
matching facility is specified in Figure 56

uc Position and Map Matching/

Position and Map Matching

Supply Position

SubscribeTo
PositionUpdate

Client

//
Update Map
Map Matching Service Centre
/'/ !
1 ol «extend»
«include» e |
' «include»
| /'
Supply Map

Geospatial Platform

Figure 56: Position and map matching use cases

The main use case is the "Supply Position" which provides position information, the map
matching which uses the "Supply Position" and the "Geo-spatial Platform" (GSP) to provide
position on a map and the "Subscribe to Position Update", which enables to a client
application to be notified on position updates. The service centre is responsible for supplying
and updating maps.

Sensors based positions and map-matched positions will be computed each second. The
sensors position interface and map-matched position interface will provide an interface to
access these positions in the following ways:

A client application requests a single position (either map-matched or not) and
immediately gets an answer.

A client application requests a number of last positions (either map-matched or not) and
immediately gets an answer

A client application registers and asynchronously receives the new positions as soon as

04-06-2010 87 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

they are computed.
4.1.2 Application programming interface

The interfaces of the position and map matching facility are specified in Figure 57.

composite structure PositionandMapping/

SupplyPosition CallBack

FIFO: Position \ % o
FIFOSize: int @ Application
maxTimeDuration: int 4

MM: MapMatched PositioningandMapping
NMEAMessage: String
position: Position

<I________

Vv

«interface» «interface»
PositionandMapping CallBack

registerMapMatchedPositionListener(ID) : boolean
registerNMEAPositionListener(ID) : boolean
registerSensorPositionListener(ID) : boolean
requestLastN_NMEAPositions(int) : String([]
requestLastNMMPositions(int) : MapMatched[]
requestLastNMMPositionsWithAgoraC(int) : String[]
requestLastNPosition(int) : Position[]
requestMMPosition() : MapMatched
requestMMPositionWithAgoraC() : String
requestNMAPosition() : String

requestPosition() : Position
unregisterMapMatchedPositionListener(ID) : void
unregisterNMEAPositionListener(ID) : boolean
unregisterSensorPositionListener(ID) : boolean

callbackMapMatchedPosition(MapMatched) : void
callBackMapMatchedPositionAgoraC(String) : void
callbackNMEAPosition(String) : void
callbackSensorPosition(Position) : void

+ o+ o+ o+

+ + + + + + o+ o+ o+

Figure 57: Interfaces of the position and map matching facility

The SupplyPosition component provides the PositionandMapping interface to the client
applications. The client application needs to implement the Call back interface to be able to
register for notifications of position updates.

The following table presents the methods available on the SupplyPosition Interface.

Method Parameters Returns Description
requestPosition None Non map- Non-blocking
matched

Returns the last known

struct .
position.

04-06-2010 88 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Method

Parameters

Returns

Description

requestLastNPositions

Int N : number of last
positions required

List of non
map-matched
struct.

Non-blocking

Returns a list containing the
N last known positions.

In case N is larger that the
number of buffered
position, the list size will be
lower than N.

requestNMEAPosition None String : Non-blocking
NMEA Returns the last known
message o .
position encoded in an
NMEA message
requestLastN_NMEAPositi | Int N : number of last List of Non-blocking
ons positions required NMEA Returns a list containing the
Irthssages N last known positions
Stngs encoded in NMEA strings
In case N is larger that the
number of buffered
position, the list size will be
lower than N.
requestMMPosition None Map- Non-blocking.
matF: hed Returns the last known
position -
map-matched position
struct
requestLastNMMPositions | Int N : number of last List of map- | Non-blocking
positions required mat.(; hed Returns a list containing the
posttion N last known map-matched
structs .
positions.
In case N is larger that the
number of buffered
position, the list size will be
lower than N.
requestMMPositionWithA | None Map- Non-blocking.
goraC mate hed Returns the last known
position

struct, String

map-matched position and
a location reference

04-06-2010

89

Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Method Parameters Returns Description
requestLastNMMPositions | Int N : number of last List of map- | Non-blocking
WithAgoraC positions required mat.ched Returns a list containing the
position N last known map-matched
structs, o
. positions.
String
In case N is larger that the
number of buffered
position, the list size will be
lower than N and a location
reference.
RegisterSensorPositionList | Pointer to the Boolean : Allows an application to
ener CallbackSensorPosition | succeeded register its callback method
interface in order to asynchronously
receive the sensors position
structs (see the
CallbackSensorPosition
interface)
UnregisterSensorPositionL. | Pointer to the None Tells the POMA service not
istener CallbackSensorPosition to send positions anymore
interface via the callback.
RegisterNMEAPositionLis | Pointer to the Boolean : Allows an application to
tener CallbackNMEAPosition | succeeded register its callback method
interface in order to asynchronously
receive the NMEA position
string (see the
CallbackNMEAPosition
interface)
UnregisterNMEAPositionL. | Pointer to the None Tells the POMA service not
istener CallbackNMEAPosition to send positions anymore
interface via the callback.
RegisterMapMatchedPositi | Pointer to the Boolean : Allows an application to
onListener CallbackNMEAPosition | succeeded register its callback method
interface in order to asynchronously
receive the map-matched
position struct (see the
CallbackMapMatchedPositi
on interface)
UnregisterMapMatchedPos | Pointer to the None Tells the POMA service not
itionListener CallbackMapMatchedPo to send positions anymore
sition interface via the callback.

The following interface shall be implemented by any application which requires asynchronous
reception of position data.

04-06-2010 90 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

Method Parameters Returns Description
CallbackSensorPosition Non map-matched struct | Void Will be called
asynchronously by the

POMA service when an
application registered this
interface.

CallbackNMEAPosition String : NMEA message | Void Will be called
asynchronously by the
POMA service when an
application registered this

interface.
CallbackMapMatchedPosit | Map-matched struct Void Will be called
ion asynchronously by the

POMA service when an
application registered this
interface.

4.1.3 Information model

The basis position information used in the positioning and map matching facility is specified
in Figure 58. See also the D.POMA.3.2 architecture specification document for more details
of the data format for different encodings, e.g. NMEA and Agora-C.

class PositionandMapMatching Informati... /

Position

- covarianceMatrixPosition: float
- covarianceMatrixVelocity: float
- HDOP: float

- integritylndicator: float

- messageld: char

- numberOfSatelites: char

- positionHeight: double

- positionLatitude: double

- positionLongitude: double

- timeStamp: String

- typeOfGPS: char

- velocityEast: double

- VelocityNorth: double

- velocityUp: double

Figure 58: Position information

04-06-2010 91 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

4.1.4 Interaction model

An example interaction of the position and map matching facility is shown in Figure 59.

sd InteractionModel /

:Application

:DDS :ConnectionManager|

search(SADescription)

URI to SupplyPosition

:SupplyPosition

requestLastNPositions(int) :Position[]

1 1
requestMMPosition() :MapMatched

1 1
registerSensorPositionListener(ID)

callbackSensorPosition(Position)

cglIbackSensorPosition(Positio:n)
1 1
1 1
1 1

unr(:egisterSensorPositionListener(ID)

Figure 59: Position and map matching example scenario

An application first needs to look up the supply position to use the provided services of the
position and mapping interface. The distributed directory service facility (see section 3.2) is
used for look up. Then the connection manager facility (see section 3.5) is used for setting up
a connection. When the connection is in place the application may use the provided position
and map matching services as shown in Figure 59.

4.1.5 High level composite architecture

The high level composite architecture for the CVIS position and map related facilities
provided by the POMA sub-project is shown in Figure 60. This component structure includes

the components and interfaces for the following domain facilities:

Position and map matching.

Infrastructure position.

04-06-2010

92

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Map provision.
Location reference.

Geo-spatial platform.

_ J

l

AGORA-C Web
Service

POMA

GSPQuery

o—L

GSPDataDelivery {l

1O

Positionand

Map Module
NT/TA

AGORA-C
Encoder NT/TA

«delegate»

oO—{1+—T Thatchin
{l S {l
LocatlonReference InfrastrcuturePosition
«delegatep» AGORA-C Map Update
Decoder NT/TA Sepuar

1 T T

v N4

Map Update VehicleSensorData COMM Data

Figure 60: High level composite architecture for position and map related facilities.

4.2 Infrastructure position

This sub-section is based on the D.POMA.3.2 specification document. In this document the
focus is on the external interfaces. For discussions of the internal architecture of the
infrastructure position we refer to the D.POMA.3.2 specification document.

4.2.1 Overview

The infrastructure position facility provides the position of CVIS nodes by localizing them
using the wireless sensor network. This involves also calibration of the system.

The CVIS applications typically do not access this facility directly but, rather it is designed to
support requirements of the cooperative traffic information facility (see section 4.6)
Positioning data provided by the infrastructure system will be available to the applications
through the position and map matching facility as presented in the previous section.

CVIS nodes are located along the road, and with the availability of sensor units that can
potentially be distributed over a wide area, localization of the single unit shall not be a manual
configuration task.

Some anchor node with fixed position will provide absolute position, whereas the other nodes
can measure some range information from distributed nodes. The range measurements (RSSI)
will then be collected and used to define the position of all the nodes. Some anchor node can

04-06-2010 93 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

also be mobile; this will allow having more accurate positioning and requiring less anchor
nodes to be present.

The use case model of the Infrastructure position facility is shown in Figure 61.

uc Position and Map Matching/

Client

InfrastructurePosition

Infrastucture
Position

\

Sensors&WirelessSensorNetw ork

Figure 61: Infrastructure position use case model

4.2.2 Application programming interface

The API of the infrastructure position facility is shown in Figure 62.

class APl

InfrastructurePosition

«interface»

+ + + +

get_node_position(int) : PointCoordinates
set_node_id(int, int) : void
get_node_id(int) : int
get_time_last_update() : int

class APl

InfrastructurePosition

«interface»

+ + + +

get_node_position(int) : PointCoordinates
set_node_id(int, int) : void
get_node_id(int) : int
get_time_last_update() : int

Figure 62: Class diagram for the infrastructure positioning of CVIS objects interface.

The following table describes the methods of the AP

Method

Parameters

Returns

Description

get_nod_position

Node_id: int

Latitude: double

The function returns

04-06-2010

94

Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Method Parameters Returns Description
Longitude: double the p9s1t10n, with
associated
Accuracy_horizontal: information, of the
double requested node
Time_last_update :date
set_node_id Node_id:int Result: boolean Create a new node
Sensor_id:int entry .an.d Set the
association between
the node and the
sensor
Get_node_id Node_id Sensor_id Get the ID of the
Node id sensor associated to
- a node; get the
node_id if the node
exists
get_last_time_update | Node_id Time: date Return the last

update event time of
the node position

4.2.3 Information model

Figure 63specifies the information model of the infrastructure position facility.

class DIM

CVIS_Node_Neighbour

CVIS_node .

node_id: int

node_id: int 0. RSSI: int

latitude: int a timestamp: int

longitude: int

height: int

accuracy_horizontal: int

accuracy_vertical: int RSSI_model

time_last_update: int node id: int

sensor_id: int Po: iﬁt
signma_db: int
do: int

Anchor_static

UTC_time_last_update: int

Anchor_Mobile

UTC_time: int

Figure 63: Information model for the infrastructure positioning of CVIS objects

interface

04-06-2010

95

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

4.2.4 Interaction model

An example interaction showing the usage of the infrastructure position facility is shown in
Figure 64.

sd behavioural

«interface»
API::SupplyPositionCvisObject

COMO client
! T
! i
1 set_node_id >_:
ack
<_ _________________________________
H
get_node_position »_:_
retrive_node_pos
" [
return_node_position
[T 1
1
get_time_last_update >_:
return_time

(from API)

-1

Figure 64: Interaction model for the infrastructure positioning of CVIS nodes

4.2.5 High level composite architecture
See Figure 60.
4.3 Map provision

This sub-section is based on the D.POMA.3.2 specification document. In this document the
focus is on the external interfaces. For discussions of the internal architecture of the map
provision facility we refer to the D.POMA.3.2 specification document.

04-06-2010 96 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

4.3.1 Overview

The map provision facility provides services for supplying and updating maps as illustrated in
the use case model of Figure 65.

uc Position and Map Matching/

Map Provision

//
Update Map
Service Centre
i !
//’ «extlend»
ﬁinaude» y
Supply Map

Geospatial Platform

Figure 65: Map provision use case model

The SupplyMap use case will be supplied with the CVIS vendor specific information as
agreed in WP2.

The UpdateMap will provide map updates according to the ActMap update exchange format.
It represents a standardised intermediate XML format based on the data model of the ISO
standard "Geographic Data Files" (GDF) designed for exchanging map updates between the
proprietary formats of the map update suppliers and the map update users.

Constraints

The integration of the ActMap updates into the binary database (PSF) used by the CVIS
facilities or applications requires an ActMap client capable of compiling the updates in an
embedded environment. It is under the responsibility of the service or application to develop
such an ActMap client to make use of the updates provided by the map update server. Another
possibility is to directly provide PSF tiles for download. This has the advantage that the
updates are compiled on the server side where a more performance compliant environment is
available (see Figure 66). This alternative map update method can be provided by map engine
providers to services or applications that require updates but have no ActMap client at their
disposal.

In the following only the standardized ActMap process will be described. Other update
processes offered by map providers, like PSF download, use proprietary interfaces. Map
providers are in charge of providing these proprietary interfaces documentation to the CVIS
application developers.

04-06-2010 97 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

PSF Download ActMap

Application Application

ActMap Client

PSF Tile Download

MapStore ActMap

Incremental
Compiler

_ Map Update Server \ Map Update Server

Figure 66: Distinction between the PSF download & ActMap update mechanisms.

4.3.2 Application programming interface

The general structure of the XML schema for the ActMAP update exchange format is
provided in the ActMap specification chapter 2.8 (http://www.ertico.com/en/sub-
projects/actmap/public_documents/). The detailed source code of the schema can be found in
appendix A of the ActMap specification.

The ActMap map updates are stored on the ActMap server where the map updates can be
accessed using an XML query.

A set of transactions can be given to the ActMap server as a standard XML request in order to
optimize the updating process for the component that updates the infrastructure or in-vehicle
map:

Provide the information for the baseline map and update supplier when the latest update
was put on the server;

Give all updates that fulfil specific selection and filter criteria;
Give the size of the updates that fulfil specific selection and filter criteria.
The ActMap server considers three different types of requests:

Update discovery to determine whether the baseline map that is used to create the in-
vehicle PSF is supported;

Update provision requests for getting map updates and corresponding information;
Profile requests to set general configurations for getting map updates.

Dependent on the nature of this XML request an XML file with a specified structure is
provided back. The corresponding type of request - response combination can be found in the
ActMap specification document.

04-06-2010 98 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The logical API of the map update interface is depicted in Figure 67.

class Map Provision/

«interface»
MapUpdate

getUpdateSize(Filter) : void
registerMapUpdate(ID, Profile) : void
supportRequest((PSFType) : void
updateRequest(Filter) : UpdateCollection

+ + + +

Figure 67: Map update API

4.3.3 Information model
The Figure 68 shows the data model for the map update facility. It contains Meta data for the
corresponding baseline map and has several update collections.

Further information about the model can be found in the ActMap specification chapter 8.1.2,
figure 15 which is at http://www.ertico.com/en/sub-projects/actmap/public_documents/.

04-06-2010 99 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

1.n
o |
ActMAP Update 1 Update Collection
+Supplier Priority : boolean +Partition ID : ID
+User Priority : Enum(1...9) +Version : Timestamp
+Operation : Enum (add,change)
1 +Time Zone : String
1 +Accuracy : String
Dependenc
! {Sorted by priority} P v
Metadata T.n +Partition ID : ID
1 +Version : DateTime|

+MapProvider : String K>———|+LayerID : String
+UpdateSupplier : String Update Transaction 0..n
+MapName : String
+Release : String +Supplier Priority : boolean
+Copyright : String +User Priority : Enum(1...9) 0..1
+Description : String +Version : Timestamp Event
+DataDictionaryID : String 1
+LayerlID : String 1nl1 -
+MeasureUnit : String +g;’etm|[') :1D ddl ch del
+GeoSystem : String +Status : enum add| change|de

+DurationStart : DateTime

Update Operation +DurationEnd : DateTime

1.n +DurReliability : enum rel | guess | no glue|
| ——<+Operation : Enum add|del|lchange|merge|split +Expiration : DateTime
Data Entity 1
+State : Enum (old|new)
+EntityID : ID Feature Reference
+EntityCode : String 0..n 0..n
JA +FealID: ID
+Feat_Cat : Number
+Partition_ID : ID
0.1 +Operation : Enum (add|del|change|unchange
HO..n L%.n
Seaming | 1 1 (LSeaming 1 (Lincludes 1 <Linvolves
1 Q
Seaming Point Feature Line Feature Area Feature Complex Feature Relationship
+NodeStatus : Number| +Splitind : Boolean +Splitind : Boolean +CmpSplind : Number|
+LineFeat1 : ID +FromiD : ID +FromID : ID
—<3+LineFeat2 : ID +TolD : ID 1 1 +TolD : ID 1
1 +EdgeStatus : Number|
1 [0) 1
1 1
0..1 0..n 0..n
0..n 0..n 0..n
Coordinate
Attribute

+CoordinateString : String
+Operation : Enum add|deljchangejunchange +Operation : Enum new|change|del|unchange

0..n |+DurationStart : DateTime 0.n

+DurationEnd : DateTime

&

Single Attribute
Composite Attribute|

+AttrType : String 2.n
+Value : String
+OldValue : String

Figure 68: Information model for map update.

04-06-2010 100 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

4.3.4 Interaction model

The following sequence diagram illustrates how the communication between the in-vehicle
map update module including functions of the update trigger and update manager and the
ActMAP system can look like. At the in-vehicle side there are three entities:

Update trigger: this is signalling a situation when an update is needed - the update trigger is
a component needs to be implemented by the CVIS geo-engine module provider

Update manager: this is deciding which types of updates are necessary and is contacting
the ActMAP service centre to get the updates - the update manager needs to be
implemented by the CVIS geo-engine module provider.

Map: this is the onboard map database to be updated. The update manager will perform the
updating of the map.

Update trigger : Update manager : Map : In-vehicle POMA map update server
UpdateTrigger Update manager map database ActMAP system
1: Check Ajpproach destination
<
2:| Approach destination trigger
3! Specify filter
=1
4: Update| request
5:|Create update
=1
6: Send|update
7: Update map N

8:|Apply update
=1

9: Update created

ate version control

p—

10: Up

Figure 69: Behavioural model with process flows and timing

The process flow is done according to the map update needs of the in-vehicle platform.
Nevertheless the same approach can be taken into account for the infrastructure.

In the process two different mechanisms - PUSH and PULL - can be taken into account. Both
mechanisms are possible. Nevertheless in CVIS at least one mechanism will be enabled
according to application needs. In general in case the PUSH mechanism is implemented a
bidirectional communication is needed at least for subscription.

Further information about the subscription model can be found in the ActMap specification

04-06-2010 101 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

chapter 6.2, figure 15, (http://www.ertico.com/en/sub-projects/actmap/public_documents/).

4.3.5 High level composite architecture

See Figure 60.
4.4 Location reference

This sub-section is based on the D.POMA.3.2 specification document. In this document the
focus is on the external interfaces. For discussions of the internal architecture of the location
reference facility we refer to the D.POMA.3.2 specification document.

4.4.1 Overview

This facility allows a CVIS facility or application to encode or decode an AGORA-C location
reference.

Map matched positions and geo-referenced data will be exchanged between independent
CVIS components as AGORA-C Strings. The location reference facility provides a service to
encode and decode location referenced data. Locations to be encoded consist among other
information of a list of map link identifiers and are therefore map provider dependent. From
an implementation point of view, the location reference facility will provide 2 AGORA-C
encoders and decoders, one for each map provider. Depending on the map used by the CVIS
facility or the application, the corresponding encoder/decoder must be chosen. Both AGORA-
C services will use the same interface and therefore calls and parameters will be identical.

The following description is provisional. To encode map-matched positions POMA will use a
simplified AGORA-C which will be defined in the SAFESPOT project. The interface will be
adapted to this AGORA-C in alignment with SAFESPOT. Also, lane position is not
considered here and will have to be added.

The use case diagrams in Figure 70 and Figure 71 shows main use cases of the location
reference facility. The AGORA-C encoder and decoder actors perform the calculations using
either the location data or link identifier inputs provided by the clients.

04-06-2010 102 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

uc SupplyLocationReference Interface/

Client

SupplyLocationReference

Provide set of Links

Generate Points

~
- —

76RA—C Encoder

Select and Remove
Points

Get Encoded
AGORA-C Location
Reference

Figure 70: Use case model for the SupplyLocationReference Interface. This UC
describes the AGORA-C encoding interactions.

uc DecodeLocationReference/

Client

SupplyLocationReference

Provide AGORA-C

Location Reference

Parse Binary Code

Get List of AGORA
Points

AGORA-C Decoder

Decode

~
H ~

] RS
«include» «include»

AGORA Map-
Matching

AGORA Ruled

Get Set of Links Routing

Figure 71: Use case model for the SupplyLocationReference interface. This UC
describes the AGORA-C decoding interactions

04-06-2010

103

Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

4.4.2 Application programming interface

The API of the location reference facility is shown in Figure 72.

The following methods are available for the location reference facility.

class Agora-C Interface /

«interface»
LocationReference

+ decodeAGORAC(String) : Path
+ encodeAGORAC(Path) : String

Figure 72: The LocationReference API.

Method Parameters Returns Description
encodeAGORAC() | listOfLinks : List<Link> String Constructs an
. AGORA-C String from
startOffset : int a list of directed Links,
endOffset : int a startOffset and an
endOffset.
decodeAGORAC() | agoracCode : String listOfLinks : Takes an AGORA-C
List<Link> String as input and

startOffset : int
endOffset : int

retrieves the list of
links with link IDs and
direction that constitute
the encoded path.

For both methods, the startOffset is the distance from the starting point of the first link of the
list to the point where the actual location to be encoded starts.

Similarly, the end offset is the distance from the end of the path to the end of the last link.

04-06-2010

104

Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

4.4.3 Information model

The information model of the location reference facility is shown in Figure 73

class Agora-C Interface/
Path i .
ListOfLinks
endOffset: int
links: ListOfLinks >
startOffset: int
1.*
«enumeratio...
Direction Link LinkID
cenumo (- mmm e - direction: Direction ~ [-----""------- =
. ID: LinklD
Positive
Negative

Figure 73: Location reference information model

4.4.4 Interaction model

The interaction model of the location reference facility is shown in Figure 74

sd InteractionModel LocationReference/

% :LocationReference|

:Client

encodelLocationReference(p:Path) :String

decodelLocationReference(agorac:String) :Path

Figure 74: Location reference interaction model

4.4.5 High level composite architecture

See Figure 60.

04-06-2010 105 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

4.5 Geo-spatial platform

This sub-section is based on the D.POMA.3.2 specification document. In this document the
focus is on the external interfaces. For discussions of the internal architecture of the GSP
facility we refer to the D.POMA.3.2 specification document.

4.5.1 Opverview

The GSP facility has two external interfaces. The first one is used the query interface for
accessing different GSP functionalities. The second one is used to deliver traffic data to the
GSP.

The query interface provides GIS functions such as "Geocode", i.e. to convert an address to
X,Y coordinates, "MapDisplay & Route", i.e. to calculate the optimal route from a single
location to one or several destinations.

To enhance the information provided by the GSP, traffic data may also be added. This may
then be used to enhance the response provided by "MapDisplay & Route" requests. Traffic
data is added through what is denoted the GSP data delivery interface.

The geo-spatial platform provides location information, geographic information and
functionality as an asynchronous messaging-based Internet product.

The GSP is exposed as a service using an XML-based framework which allows the user to
interact with it by sending requests and receiving responses using HTTP/1.1.

The use case diagram in Figure 75 specifies the main services provided by the GSP facility.

GSP

Query

Geocode

Reverse Geocode

(N Query
f): Add Traffic —
Query Client Data

Traffic Data Provider
Query

MapDisplay

Query

Route

Figure 75: Use case model for the GSP query interface.

04-06-2010 106 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

4.5.2 Application programming interface

The two interfaces provided by the GSP facility is specified in Figure 76. The GSP query API
provides geo-coding, map display and routing information, the GSP data delivery API enables
traffic data to be fed in from external sources. This traffic information will then be utilized by
the GSP facility to provide more enhanced information through the GSP query API.

«interface»
GSP_Query

Geocode(Geocode_request) : Geocode_response
ReverseGeocode(ReverseGeocode_request) : ReverseGeocode_respons,
MapDisplay(MapDisplay _request) : MapDisplay _response
Route(Route_request) : Route_response

]

+ + + +

«interface»
GSP_DataDelivery

+ AddTraffic(Traffic) : void

Figure 76: Class diagram for the GSP query interface.

The methods provided by the GSP query API are elaborated further in the table below.

Method Parameters Returns Description
Geocode Address: string locationRef: AGORA-C | Returns a location
NumResultRows: int score: int reference for an
address

address: string

ReverseGeocode | locationRef: AGORA-C | address : string Returns an address
for a location
reference

MapDisplay locationRef: AGORA-C | urlRef: string Returns a link

) . o (URL) to a map
mapStyle: MapStyle filename: string image
traffic
Route start: AGORA-C time :double Returns a route

between 2 points

end: AGORA-C distance: int .)
using static map data

stages: ListOfStages

The GSP query API requires all location references to be in AGORA-C, where the AGORA-
C web service will be used for encoding and decoding.

The request and response are in XML format. The full specification is available in the GSP
location agent specification.

Methods and parameters to access the GSP data delivery API are presented in the following
table.

04-06-2010 107 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Method Parameters Returns Description
AddTraffic() Traffic void Add traffic data from
COMO to the GSP
4.5.3 Information model
Figure 77 specifies the information model the GSP facility.
cd GSP_Query
Geocode_request Geocode_response
address: string locationRef: AGORA-C
numresults: int score: int
address: string
ReverseGeocode_request Traffic

locationRef: AGORA-C

ReverseGeocode_response

address: string

MapDisplay_request

locationRef: AGORA-C
mapStyle: MapStyle

traffic: ,

\

MapStyle

style: string
zoomLevel: int
zoomScaleFactor: int
mimeType: string
height: int

Route_request

start: AGORA-C
end: AGORA-C

MapDisplay_response

urlRef: string
fileName: string

locationRef: AGORA-C
details: string
category: int

other ?:

Stage

locationRef: AGORA-C
instruction: string
traffic:

7
Route_response > ListofStages
time: double
distance: int
stages: ListofStages

Figure 77: Information model for the GSP query interface.

4.5.4 Interaction model

A typical GSP query transaction may be summarized by some or all of the following steps:

An application constructs a standard XML request based on the interface defined by the

GSP query APL

Depending on the nature of this XML request, GSP may do one or more of the following:

Geo-code an address;

04-06-2010

108

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Reverse geo-code a location, i.e. to convert X,Y coordinates to corresponding address;
Request a custom rendered map image;
Derive a route between two points.

GSP then responds to the application with the appropriate results in the form of an XML
response.

In cases such as map request where large amounts of geographic data are produced, the
raw data is output to a dispatch demilitarized zone and the reference location of that
information is included in the XML response for the application to download.

Example scenarios related to the four methods of the GSP query API are shown in Figure 78,
Figure 79, Figure 80 and Figure 81.

Geocode method

PO, PCMa,
AP GSP_Geury AP AGORA-C

CWIs apiplication

RegeustGeocode() =

L | GetCoords()

RequestAGORA-C_decode ()

v

AGORA-C_locationref Decode()

Geocode_response

L]

Figure 78: Behavioural model for the geo-code method of the GSP query interface.

04-06-2010 109 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Reverse geo-code method

PCOMA POMA,
AP GSP_Geury AP AGORA-C

CWIS apiplicatiun i
i

RegeustReverseGeocode() —
» | RequestAGORA-C_encode()

XY _locationref () Dz
* T Encodel)

; GetAddress()

-
“ReverseGeocode_response

—

Figure 79: Behavioural model for the reverse geo-code method of the GSP query

interface.
Map display method
PO, PO,
AP GEP_Geury APl A GORA-C
CYIS application E ;
RequesthapDisplay() e i

» RequestAGORA-C_encadel) -
AY_locationref ;
+ Encode()

L Gethdap()

MapDisplay_response GetTraffcilnfo)

"l
el

Figure 80: Behavioural model for the Map display method of the GSP query interface.

04-06-2010 110 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Route method

PORdA,
APLGSP_Qeury PO,
APl AGORA-C

CWIS application i

RequestRoute()

-r—| RequestAGORA-C_encade()

A _locationref ()
+ D Encode()

- FETRDUtEI:I |
— i

—

| GetTraffcilnfa()

T ReguestAGORA-C_decodel) Lo
Route_response ABORA-C_locationref () [I::I
| = - — Decode()

Figure 81: Behavioural model for the route method of the GSP query interface.

The GSP data delivery interaction model is shown in Figure 82.

% PO,
AP GSP_DataDeliver
CARO - Y

|

AddTraffic()

AddTraffic()

Figure 82: Behavioural model for GSP data delivery interface.

4.5.5 High level composite architecture

See Figure 60.

04-06-2010 111 Version 1.0

“‘ cv S CVIS Architecture and
System Specifications

4.6 Cooperative traffic information

"COoperative MOnitoring" (COMO) has the task to define applications within CVIS which
deliver an agreed set of traffic data to other CVIS applications. Since COMO is delivering a
set of data and information which are to be used by numerous applications these data sets
need to be commonly available within CVIS using agreed data formats and access
mechanisms. The intention must be that every interested application knows where and how to
access COMO data and how it looks like.

4.6.1 Overview

The following figure explains how COMO interacts with CVIS applications (produced by the
applications sub-projects), with the geo-referencing functionality of POMA and with COMM.
Of course, FOAM is the environment which provides the means to set up the interfaces by
providing standard functionalities. Thus FOAM is not displayed here - just see it as the canvas
on which this picture is drawn.

i Applications via
: Query API and
: Subseription

i Manaper

-
.........

/

L { Transmission of COMO |
POMA | Edntahatwm] applications :
- -~ J ' : and platforms

_,.)l e) -
- | .'(r_ . '/_
sy LE6R S
APP SPs "-,l .. .
Cither Platform

+ COMO external
p Interface
Figure 83: COMO system overview - COMO integration concept

As seen in Figure 83, COMO provides, apart from several interfaces between the COMO-
internal applications, four external interfaces towards

e CVIS applications (designated as APP SPs) for retrieving COMO data via the COMO-

04-06-2010 112 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

API, these are the applications from the CVIS Subprojects CINT, CURB, CF&F but
also POMA and COMO, as well as for the LDM Q/T-API

e CVIS applications for the COMO subscription service (displayed together with the
interface above)

® POMA for the geo referencing of COMO data and
e COMM for broadcasting and receiving COMO data from other platforms

4.6.2 Application programming interface

High level description of the interface:

The COMO API is the data access API of all COMO data including the LDM. On the one
hand it provides together with the LDM Manager elementary data object related read, write,
delete and insert methods to manage the data of the LDM. These access methods are named
Q-API (read) and T-API (write, delete, insert). The only CVIS component that is allowed to
use the T-API is the “COMO Data Fusion” and the “COMO Local Traffic State computation”
(chapter 10).

Another functionality that is additionally provided by the LDM manager is the “Geo-spatial
Query Engine”. This component allows for geo-spatial querying of any data of the data base.

The following Figure 84 describes the related process. Any CVIS application can access data
of the LDM data base by means of the COMO API. It simply has to register and submit the
data request and receives in return the specified data from the APIL.

=d Comodpi

CWIS Application COmMO AR

requestComaolata

1
comolata
1

Figure 84: COMO API

The specific details of the information model were defined together with SAFESPOT. The
access of data from the LDM will be realised through the COMO API via the SAFESPOT
query APL

04-06-2010 113 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

4.6.3 Information model

This section provides the specification of the COMO domain information model, which is the
data structure of the LDM database. The domain information model identifies and defines the
main concepts of the domain. This model typically embraces actors and information objects
that flow within the system or application. The concept relationships are also important
aspects and should be described. The concepts are modelled in terms of their types.

A detailed description of the data and information sets provided by COMO is contained in the
annex under chapter 12.1 of D_COMO_3.2, Version 2.0.

Not all sets of information or data are necessarily available in all platforms. Vehicle sensor
data, for example, might be pre-computed before they are sent to the CVIS platform, thus
resulting in the fact that XFCD messages might be provided by the legacy system directly but
vehicle sensor data will not. The availability of the COMO data is specific, depending on the
legacy system manufacturer's policy constraints or the technological availability of the data in
the legacy system. However, the COMO architecture takes care, that all COMO data can be
contained in the COMO data sets if available from the legacy platform.

The COMO data set comprises traffic and environmental status data in the broadest sense,
which also includes pre-processed sensor and detector data and the status of traffic control
devices. As for the traffic status data, also incident information is contained. The
environmental status contains besides weather also road-surface conditions.

As illustrated in Figure 85 below the whole COMO data model is derived from one geo-
referenced object, which means that the main characteristic of all data classes is to have a
spatial reference. Besides this the "COMO data world" is subdivided into two:

The "Static Objects", which describe the surrounding of the vehicle or road-side unit in
terms of road-geometry (static digital map), road-furniture of any kind (detectors, actors,
etc.) and "Reference Tracks", which are the possible ideal driving tracks at intersections.

The "Dynamic Objects", which comprises all geo-referenced information that is time
dependent. Of course all moving objects, e.g. vehicles, and vulnerable road users, can be
found here with their actual positions and speed. Furthermore, the traffic control, the traffic
and the environmental states belongs to this object set.

Note that only the last status of dynamic objects is stored in the data base. Because of
performance and limited memory reasons it is not foreseen to store historical data in the LDM
data base.

In the case of the vehicle LDM additional requirements have to be considered that above all
refer to the moving horizon of the vehicle. As a consequence all data instances have to be
checked permanently whether they are outside the current horizon of the vehicle. All such
data items must be deleted.

04-06-2010 114 Version 1.0

CVIS Architecture and
System Specifications

«"CVIS

BIAIEG PUE
agioy Loy Pl
fAl0IEE|IWg
201
PUE SaW) |2 hEd) 1338 j UR P Ay
i !
SO PPI0D pEOY SHM
saqnad
puE zaje) Buuan)|
SRR =N el
SRR}
HaBWUaI AU LI auel) sajels o1gel] Saalgn Buisoy

EETTICES

sjoalqn ey

sfuis sy

nsy

SAIE] 'SPy

sBUIIER peoy

sEpaRn

saogy

SHIE] AIUALRLEY

anyUng peoy

a0 paalale)a-oag

sj08lgn 20ek

fiaunag peoy

=dojg =g

UoQasLIoaIEY| S58]0

Overview of the COMO data model, showing the hierarchy of the data

.
.

Figure 85

classes.

Version 1.0

115

04-06-2010

‘(" cv s CVIS Architecture and
System Specifications

4.6.4 Interaction model

This chapter provides the sequence diagrams for the COMO data processing and fusion
process and the LDM manager process.

COMO data processing / fusion

The figure below shows the general sequence for a data fusion in a COMO equipped CVIS
platform.

=d DataFusionAndProcessing /

RemoteApplication Ldmbdanager COMO AF| DataProcessingAndFusion FOMA

X mapBasedComolbata
] I

v
comoDatailiithAgorac

¥

agolaﬁecode
T

mapReferance
T

mapBasedComaolata

dataFusion

mapBasedFusedComolata

mapBazedComal ata

D TSP —
A

T
agoraEncode
T

agora‘cCode

¥

comoDataWithAgorac

Legend

l:‘ COMO Frocess
l:‘ Mon COMO Process

Figure 86: Data processing / fusion process

The COMO API receives input data from

e the LDM manager which provides access to the LDM holding also (unfused) high
level (e.g. LOS) COMO data,

e remote applications providing relevant information via broadcast or unicast messages
(e.g. XFCD)

Another data source is the legacy system the platform is connected to (not displayed in the
picture above), which may provide information and data either to be entered into the LDM (as
it would e.g. be the case with sensor data) or fused with data from other sources (as mentioned
above).

The data fusion process is the core process of the data fusion package and responsible for the
fusion of data from the sources mentioned above. The results of the data fusion process are
written into the LDM using the LDM Manager and also provided through the COMO APL

Besides the traffic state calculation the data fusion package is the only CVIS process eligible

04-06-2010 116 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

to write into the LDM. Thus also un-fused and sensor data are passing this process but are
"only" forwarded to the LDM manager. While sensor data are utilised in the computation of
the local traffic state process (one source for the data fusion package) and not in the data
fusion package other (higher-level) data may not be fused if e.g. the LDM does not contain
any other suitable data sets. As an example, there may only be one vehicle generating an
EFCD message in the computation of the local traffic state, which in a vehicle can be the
EFCD generation. If there is no other vehicle or RSU in the vicinity the LDM will not
contain a suitable data set, e.g. another similar EFCD message.

COMO API

The COMO API is the data access API of all COMO data including the LDM. On the one
hand it provides together with the LDM Manager elementary data object related read, write,
delete and insert methods to manage the data of the LDM. These access methods are named
Q-API (read) and T-API (write, delete, insert). The only CVIS component that is allowed to
use the T-API is the “COMO Data Fusion” and the “COMO Local Traffic State
computation”.

Another functionality that is additionally provided by the LDM manager is the “Geo-spatial
Query Engine”. This component allows for geo-spatial querying of any data of the data base.

The following Figure 87 describes the related process. Any CVIS application can access data
of the LDM data base by means of the COMO APL It simply has to register and submit the
data request and receives in return the specified data from the API

=d Comofpi

CWVIS Application COmMO AFI

requestComolata

1
comolrata
1

Figure 87: COMO API

The specific details of the information model were defined together with SAFESPOT. The
access of data from the LDM will be realised through the COMO API via a SAFESPOT
query API. The description of the LDM API is not part of this document.

The COMO API provides network transparent access for all CVIS SPs to information

04-06-2010 117 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

provided by COMO. It realises functionalities which are responsible for the exchange of
different kinds of information between applications on different hosts like vehicles, roadside
units or service centres. COMO acts as a distributor to which data providers and data
receivers can connect to. It realises a rule and constraint based Subscription and Notification
service which manages the distribution of messages (COMO information) towards the
different applications.

Data Providers, data receivers and the distributor

Figure 88 gives an overview how an application will fit into the COMO data distribution
concept.

COMO -

Traffic State Dala provige:

/ Data provider

COROD - ¢
Distributor

<\

CINT —
CTA Application

T Data receiver

Data recelder

Figure 88: Applications & COMO API

This can be shortly described within the following use cases:

e Data receiver (CINT CTA Application) registers at the COMO Distributor (COMO
API) in order to be informed when there is a new data unit of a certain kind (COMO
Traffic State information)

e Data provider (COMO Traffic State) registers at the COMO Distributor as service for
certain data units (COMO Traffic State information)

e Data receiver pulls a specific data unit
e Data provider pushes an updated data unit to all interested data receivers

COMO allows connecting data providers, data receivers or distributors over the network. This
can be achieved by using the COMO client and server.

Network transparency

The COMO client provides an access to a COMO distributor over the network. More
technically spoken, the COMO client and the COMO server act as stub and skeleton to a
COMO distributor. Therefore a COMO client and a COMO distributor have the same APIL
This means that a data provider or a data receiver can interact with a remote distributor in the
same way as if it was on the same machine. So it doesn’t have to even need to know whether
there is a network in between or not.

04-06-2010 118 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

Java-VM with COMO client
Data unit Data unit
provider receiver
\ / <<interface>> <<interface>>
DataUnitProviderLink DataUnitReceiverLink
COMO client A A
. . DistributionClient
Network
L 2
Data_unlt Data'unlt COMO server
provider receiver
<<interface>> <<interface>>
— DataUnitProviderLink DataUnitReceiverLink
Cache COMO JAN JAN
distributor : :
Java-VM with distributor DataUnitDistributor

Figure 89: Network Transparency

The COMO client and server will also take care of map matching. Thus locations in the
payload of every data unit that is sent over the network will be encoded to AGORA-C to
achieve map independent geo-referencing on the sender side and the receiving side will
decode the AGORA-C and match it on the local map. This is done by using the POMA
AGORA-C en- and decoder services.

Broadcast Use Case — EFCD example

The following section describes the realisation of a COMO broadcast scenario taking the
example of the COMO FCD Event generation and provisioning.

04-06-2010 119 Version 1.0

P

cv S CVIS Architecture and
System Specifications

; Vehicle /
Vehicle RSU
POMA
AGORA
Encoder
Broadcast
- . = Sender
COMD | Broadcast e
distributor Sender DU R
A (Dl Receiver)
LDk AP
Broadcast Broadcast
Recelver Raceiver
(DU Provider) (DU Prowider)
LDM POMA
AGORA
Deacoder

Figure 90: FCD Event in a Broadcast scenario

Sender

1.

The Data Fusion or Local Traffic State Calculation generates a new FCD Event and
inserts it into the LDM by using the LDM Manager

The LDM Manager is registered as DU Provider to the COMO API for the DU
FcdEvent

. The ComoBroadcastService is registered as DU Receiver for DU FcdEvent to the

COMO API

The ComoBroadcastService receives the new Fcd Event, calls the POMA AGORA-C
encode functionality

. The ComoBroadcastService encodes (streamline information for optimised

communication) the Fcd Event object and provides it as Broadcast Content to the
appropriate FOAM interface

04-06-2010 120 Version 1.0

P

cv S CVIS Architecture and
System Specifications

sd FodEventBroadeastSender /)

DataProceszsingAndFusion COMO AFRI Ldmbdanager ComoBroadeastSenice FORA FOAM
registerDatalnitProviderF cdEvent ¥
LT || :
;oo e gisterD atasUnitR e ceiverF sdEvent
=]]

: generatef cdEvent

writeF cdEwent

¥

g notifyNewF cdEvent
=i}

notifyM ewF cdEwvent

Y

agoracEncode

- agaracCode
-

encodeF cdEventhessageForBroadcast

broacastFed E\rle nitdeszage

EF e 23 Legend

[] como process

[] Han como Pracess

Figure 91: Sequence diagram - FcdEventGeneration and message sender

Receiver

1. The ComoBroadcastService receives the Fcd Event information via the appropriate
FOAM CALM interface

2. The ComoBroadcastService module decodes the Fcd Event information and builds a
new FcdEvent object

3. The ComoBroadcastService module calls the AGORA-C decode method and inserts
the result into the appropriate FcdEvent attribute

4. The ComoBroadcastService module is registered as DU Provider to the COMO API
for the DU FcdEvent

5. The ComoBroadcastService provides the FcdEvent to the COMO API

6. All modules registered as DU receive new FcdEvent from COMO Distributor

04-06-2010 121 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

sd FodEwvernt Broadoast Receiver /

FOAM

 recejveF cdEventBroadcoast

FORA

ComoBroadeastSenvice

provideF od Eventhd assage

registerl atalnitP roviderF cdEwvent |

COMO AP

F 1

ararachecode

L |

maphlatchedReference

g 8

decodeFchventMESSageFrc-mElroad-;}ast

Legend

I:l COMO Process
I:' Hon COMO Process

niotifyMewk cd Event

Figure 92: Sequence diagram - FcdEventGeneration and message receiver

COMO API interfaces:

1. to LDM Manager - to realize the scanning of the data base by means of available
querying mechanisms

2. to application / service - to receive rules from the applications and send notification
messages to the applications

4.6.5 High level composite architecture

The technological objectives for "CoOperative MOnitoring" (COMO) are to provide reliable
traffic information and traffic data (vehicle data and messages, local traffic overviews of the
RSUs and centre-level traffic overviews) to CVIS applications which may use them to

provide their services.

The following figure provides an overview on the COMO components on a high level.

04-06-2010

122

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

cmp COMODomain Model
comMo
LDM Manzger
GeoqueryEngine
LDk
Q/T LDM API é)
CoOmMO AR CW15 Applications
O)
‘ MessageManager ‘
¢ &
i ‘ Message Stack ‘ _d__,d_—()
Local Traffi cstate Calculation
fJ‘\ SubscriptionAndNetification [
ﬁ) FOAM
DataProcessingAndFusion ‘ Rules AndConstraints ‘
iy
i
) (@)
OEMDatzasource ‘ LegacyDatasource Lege“d
l:‘ COMO Process
l:‘ Hon COMO Process

Figure 93: COMO composite diagram

The COMO composite diagram above describes the structure of the COMO sub-system
together with its embedding in the overall CVIS system. The elements marked in green are
not provided by COMO. The COMO system mainly comprises the following functional units:

1. OEM and Legacy Gateway
These are the interfaces towards OEM platform to integrate data from the vehicle or the
infrastructure side and towards legacy systems to integrate relevant information from
traffic management centres.

2. COMO Data Fusion and Traffic State calculation
COMO Traffic State Calculation and Data Fusion are necessary to provide consistent
basic traffic related as well as traffic state information to CVIS applications. These
processes access the POMA functionalities for geo referencing of data provided by RSU
or vehicle via OEM Gateway which are not geo referenced by nature and map matching of
data sets provided by other vehicles through COMO API which are already geo
referenced. The COMO Data Fusion and Traffic State calculation components are the only
one eligible to write data into the LDM concerning CVIS.

3. COMO API
This is the interface towards the Local Dynamic Map (LDM) which contains the COMO
data. The COMO API thus represents the LDM in CVIS. The COMO API provides access
for all CVIS SPs to information provided by COMO. It realises functionalities which are
responsible for the exchange of different kinds of information between applications on

04-06-2010 123 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

different hosts like vehicles, roadside units or service centres, it takes care about
subscription for information and message handling and management and it provides a set
of rules and contraints to access specific sets of information.

04-06-2010 124 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

5 Execution infrastructure

This section is based on the D.FOAM.3.2 specification document. A brief overview of the
execution infrastructure is provided in the following. For more elaborated specifications of the
execution infrastructure we refer to D.FOAM.3.2 and to generally available OSGi and Java
documentation.

5.1 Overview

The CVIS execution infrastructure is based on the OSGi framework. Since the current OSGi
specification only provides a binding to the Java platform, the execution infrastructure is
implemented by a set of standard Java APIs, as well as a "Java Virtual Machine" (JVM),
which will run on top of the Linux operating system that comes with the CVIS host

Please note that the dependency from the execution infrastructure on the underlying operating
system constitutes a formal interface between the middleware and the communication
infrastructure, where the communication infrastructure is the provider of the CVIS host
hardware, including the Linux operating system.

5.2 High level composite architecture

The OSGi framework can be divided into the five layers.
Security layer

Module layer

Lifecycle layer

B b=

Service layer
5. Actual services

This layering is depicted in Figure 94.

Bundles Service

| Life cycle |

Secunity

| Module |

| Execution Emrironment |

| Hardware /05 |

Figure 94: Execution environment parts

These layers provide the necessary functionality to deploy and operate Java bundles,
including bundle registering, local interaction (within same CVIS host), lifecycle management
etc. Recall that all the CVIS facilities and applications are Java bundles except for native
applications (native applications may expose their services in the OSGi based execution
infrastructure though).

04-06-2010 125 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The security layer is based on Java 2 security but adds a number of constraints and fills in
some of the blanks that standard Java leaves open. It defines a secure packaging format as
well as the runtime interaction with the Java 2 security layer. In CVIS we have specified a
more extensive security framework to support security requirements of the ITS environment
(see section 3.3).

The module layer defines a modularization model for Java. It addresses some of the
shortcomings of Java's deployment model. The modularization layer has strict rules for
sharing Java packages between bundles or hiding packages from other bundles. The module
layer can be used without the lifecycle and service layer. The lifecycle layer provides an API
to manage the bundles in the module layer, while the service layer provides a communication
model for the bundles.

The lifecycle layer provides a lifecycle API to bundles. This API provides a runtime model
for bundles and is used for lifecycle management in CVIS. The lifecycle API is presented in
section 3.1 which describes the lifecycle basic facility. It defines how bundles are started and
stopped as well as how bundles are installed, updated and uninstalled. Additionally, it
provides a comprehensive event API to allow a management bundle to control the operations
of the service platform. The lifecycle layer requires the module layer but the security layer is
optional.

The service layer provides a dynamic, concise and consistent programming model for Java
bundle developers, simplifying the development and deployment of service bundles by de-
coupling the service's specification (Java interface) from its implementations. This model
allows bundle developers to bind to services only using their interface specifications. The
selection of a specific implementation, optimized for a specific need or from a specific
vendor, can thus be deferred to run-time.

A consistent programming model helps bundle developers cope with scalability issues in
many different dimensions. This is critical because the framework is intended to run on a
variety of devices whose differing hardware characteristics may affect many aspects of a
service implementation. Consistent interfaces insure that the software components can be
mixed and matched and still result in stable systems.

The framework allows bundles to select an available implementation at run-time through the
framework service registry. Bundles register new services, receive notifications about the
state of services, or look up existing services to adapt to the current capabilities of the device.
This aspect of the framework makes an installed bundle extensible after deployment: new
bundles can be installed for additional features or existing bundles can be modified and
updated without requiring the system to be restarted. The interactions between the layers are
depicted in Figure 95.

04-06-2010 126 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

— reg ster

get

unget
manage

stap
Install

Bundle

uninstall
daszs load Modole

Figure 95: Interactions between layers

04-06-2010 127 Version 1.0

‘(“ cv S CVIS Architecture and

System Specifications

5.3 Application programming interface

The lifecycle layer API is specified in Figure 20. The service layer API is specified in Figure
96.

class Service Layer
winterfaces winterfaces
Bunle BuadleCentext
+ UNINSTALLED: int= 000000001 {readOnh} + getPropedy(Sting) : Siing
+ INSTALLED: int= 0400000002 {readOnky} b e e
+ RESOLVED: int= 000000004 jreadDnly] & instalBundie (Sting) Bundle
+ STARTING: int=0x00000008 {readOnly} + installBundle (Sting, put Strean) : Buadle
+ STOPPING: int= 0-00000010 {readOnly} L eime i e Benie
+ ACTIVE. int= 000000020 freadOnly} b dctmeriien Buiat
+ zdd SenicelistemenSenice Listener, Stdag) © void
+ getState it 4 sdd Sendoedistemer{Seniced istened + unid
+ stad(] uoid + remove SendcelistenerSemicelistener) | void
+ stop() : void + sddBundlelisterenBundlelistener) - woid
+ update() ; void ; + maoveBundlel istereBundiet isterer) | void
Lhadatdnan SR aH Lol + zddFramewonilistenenFane wokilistensr) T oid
+ uainstall() - void + rmaoweFneworllistensnF@me o sheer) | void
mogecEade Lo oy + registerSenics (Sting[), Olect, Dictionany) - ServiceRegistation
pnemundieag Hony + registerSenice (Sting, Olest, Dictionary) : Senioe Aegistation
+ gelocation() - Sting o : Shing) - ainteraces
+ Senices() : Ser i + getAll Service Ret Sting, Strimg) - SericeAer 7 Fitfer
+ g (e i *]

3 o (String) : + matoh(SeniceAsfereace) hoolean
s DR i w2 + gelSenice(SeniceReference) : Otject kR iDi e beelesn
*+ getesoume (Sitng) : URL + ungetService (ServiceReference) boolean + toSking() ; Sting
* gettkademiSting) : Dictianary 5 it she s e S
+ getSymbolictiane) - Sting + crestefilten(Sidng) . Filler + hashoode(:int
+ load Glass(Sting) : Glass :
e L i =] " - + malohCaseDictiorary) : boclesn
+ gelEntrpPaths(Stiag) ; Enuwetion _ £ 5 4 H
+ getEntryShing) ; URL +senice i '

+ getlsstiodifed () : longy - ; | .
+ findEnties(Siing, Sking, hoolear) - Enumeation I3ng; Dbj=ct, K | .
: tsamica? ¢ ; %
: wintertaces # ; %
H ServiceFaciory & ' :
+ getSenice Bundle, SeniceRegistation) : Olject i % f
: + wngetSer . Ser i, Qiyeet] : void J.* ‘
; Eventlisteqer
T winterfacen e
ServiceRegistrafion SETHEEREErTe; - o = i:
ervicelistener
getRefermnee () ; SericeRefermaoe = ?Ezi"’-“:”f’"”g? 590’4"“’ = T T
i D ol + getPmpertyiteys() : Shiral] senioe Chamged (SendoeEvent) | voi
e i + getundleq : Buadle
+ getibingBundes]) . Buadle]]
+ isAssigmable To Bundle, Sting) : hoolean e
-refarence
EuertOhject
ServioeEvent
~ serizMersionUID: long = 702001423000400200L freadOnky}
- taference: ServiceRsfarance (RS
o “tiparint AllServicelistensr
+ REGISTERED: int= 0:00000001 [readOniy}
+ MODIFIE] pO000000Z Jre adOnly}
+ UNRESISTERING: ini= 000000004 freadOniy}
+ SeniceEventint, SenviceRefarence)
. ; :
+ getTyped: int

Figure 96: Service layer API

04-06-2010 128 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

6 Communication Infrastructure

This section is based on the D.COMM.3.2 specification document. An overview of the
communication infrastructure is provided in the following. For more elaborated specifications
of the communication infrastructure including specifications of hardware (antennas etc) and
details of the air interfaces (M5, infrared and 3G) we refer to D.COMM.3.2.

6.1 Overview

The communication infrastructure enables seamless and continuous communication from the
vehicle towards the infrastructure and other vehicles. The connection will be transparent to
the applications, and will supply socket communications for more demanding applications.
Assignment and management of the communication media should be completely beyond the
responsibility of the non native applications. However, the communication infrastructure
provides only the possibility to communicate with other communication peers. The
communication content is within the scope of the facilities and the applications.

The communication infrastructure uses Linux as underlying operating system to provide a
flexible and open development environment and to avoid the purchasing of expensive
software licenses. Furthermore the communication infrastructure uses the basic set of
international CALM ITS communication standards as a basis. These CALM standards are
new ISO standards for car-to-car and car-to-infrastructure communication. Most of the
CALM standards are finalized. CVIS COMM acted as a proof of concept of draft [SO CALM
standards. CALM also provides IPv6 networking in the mobile environment. CVIS is based
on IPv6. This decision was taken based on ITS needs and also based on the assumption that
IPv6 will take over IPv4. However, both versions of the IP protocol can cohabit, through the
use of transition mechanisms. It was implemented and tested within COMM and the results
were fed back into the standardization process.

6.1.1 CVIS communication architecture

The communication infrastructure is depicted in Figure 97. It enables host communication
through the router and the router air interfaces. It also provides communication to CVIS sub-
system internals such as sensors and actuators.

04-06-2010 129 Version 1.0

CVIS Architecture and
System Specifications

Router 1 Host

Gateway

Figure 97: Communication infrastructure

CALM architecture

CVIS will use several communication interfaces (CIs) on the router, to be able to connect to
different types of wireless networks. Some of these interfaces are developed by CVIS parties,
so they may not have a Linux device driver in the stock operating system. Modification of the
stock Linux device driver will be needed even if they have to integrate the interfaces into a
CALM system (to make them CALM-aware).

The following air interfaces were used in CVIS:

e CALM M5
o Infrared
e 3G

The CALM based communication stack is depicted in Figure 98. More elaborated
descriptions of the communication stack is provided in D.COMM.3.2

A "CALM Device Driver Framework" (CDDF) based on ISO 21218 is provided to interface
the communication media and integrate them into the operating system of the router.

The "CALM Device Driver Framework" (CDDF is an in-kernel stack for integrating device
drivers. It implements the common device driver parts, and provides the routines and means
for the device drivers to be able to communicate with the CALM manager. It only provides
the MI-SAP (see ISO 21217) towards the ITS management, and some helper routines for the
IN-SAP (see ISO 21217).

Functions provided by the CDDF are:

CI device driver register call-backs in the CDDF. Management messages coming from the
IME (after some validity checking and housekeeping) will be passed to these call-back
functions.

The means for device drivers to be able to send asynchronous messages about certain

04-06-2010 130 Version 1.0

&9/ CVI s CVIS Architecture and
System Specifications

events to the IME.

So the management part of the air interface device drivers (the media management adaptation
entity specified in ISO 21218) can be accessed via this framework, and they can communicate
with the IME via the means provided by the CDDF.

u Facilities& - ,(: imm

Native App.

CALM Manager

exchange

Interface Management
Entity (IME)

CALM Manager

Figure 98: CALM communication stack

6.1.2 CALM ITS standards

These CALM standards are finished and will be published in a first version in 2010. The
CALM communication architecture is specified in ISO 21217, based on the ITS station
reference model presented below. "Access", "Networking & Transport" and "Facilities"
denote the ISO communication layers 1 and 2, 3 and 4, 5 through 7, respectively.
"Management" denotes the CALM ITS station and communication management. "Security"
denotes the CALM ITS security entity. "Applications" denotes the ITS applications.

04-06-2010 131 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Figure 99: ITS station reference architecture

Access layer

CVIS uses several communication interfaces (CIs) on the router, to be able to connect to
different types of wireless networks. Some of these interfaces are developed by CVIS parties,
so they may not have a Linux device driver in the stock operating system. Modification of the
stock Linux device driver will be needed even if they have to integrate the interfaces into a
CALM system (to make them CALM-aware).

At least the following air interfaces were used in CVIS:
CALM M5 (ISO 21215)
Infrared (ISO 21214)
3G (ISO 21213)

Networking & transport layer

CALM introduced IPv6 networking (ISO 21210) for cooperative ITS, which is used in CVIS.
This decision was taken based on ITS needs, and is based on the assumption that IPv6 will
take over IPv4. However, both versions of the IP protocol can cohabit, through the use of
some transition mechanismes.

Additionally, CVIS supports the CALM FAST networking & transport protocol (ISO 29281),
which was developed in a joint approach of CALM and CVIS.

Facilities layer
CALM introduced protocol means (ISO 29281, ISO 24102)
e for support of legacy systems (CEN DSRC),
e for service advertisement (similar to WAVE and CEN DSRC) using CALM FAST,

e fpr advertisement via CALM FAST of IPv6-based services (IPv6 prefix
announcement),

e for automatic mapping of ITS applications on Cls

04-06-2010 132 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

which were supported by CVIS
Management

The CALM management functionality specified in ISO 24102 is available in CVIS. This
includes also an approach for co-existence of CALM M5 with CEN DSRC in order to protect
payment transactions in electronic fee collections systems.

6.1.3 Main use cases and system boundary

The following figure shows the main use cases of the communication infrastructure. The main
actor is CVIS host. The CVIS host can be located in either of the CVIS sub-systems (vehicle,
road-side, central or handheld). Messages can either be transmitted in unicast or in multicast
mode. Unicast communication refers the point-to-point communication between two
dedicated communication peers. The communication described in the following picture is
always initiated by one actor and can be followed by a response of the communication peer.
Periodic sending of message can be seen as a successive response to a requested service.

uc CVIS Communication/

Broadcast Request

/

CVIS Host (acﬁ\

Unicast
Communication
Request

W

CVIS Host (passiv)

Communicaton
Response

Time-stamp Service

Figure 100: CVIS communication

A broadcast transmits a message to all communication peers within the communication area.
Broadcasts will be used e.g. for safety related beaconing and service announcement. An

04-06-2010 133 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

additional actor outside of the communication infrastructure is the time-stamp service
provided by the POMA sub-project. This service adds to the received data packets a time-
stamp.

6.2 Domain process model

The main processes of the communication infrastructure are:
Management data.
Transmit data.
Processing.
Receive data.
Time-stamp.

Figure 101 shows the overall domain process model of the communication infrastructure.

> Management Data >

7 \
7 N
7

/
«flow» fI ow

R Recelve Data Processmg Transmlt Data __-----=>
flow flow ﬂow «flow»

CVIS Host CVIS Host

act COMM

flow

> Time-Stamp >

Figure 101: Detailed domain process model

6.3 High level composite architecture

The communication infrastructure can roughly be divided into three communication
components and one management component. The three communication components are the
three used communication media within the CVIS project:

Cellular communication (2G/3G).
Microwave communication (M5).
Infrared communication (IR).

Note that millimetre-wave communications (MM) was also investigated in CVIS, but not
implemented.

The management component contains the management parts of the CALM standards ISO
21218 and 1SO 29281. The CALM communication and station management entity specified
in ISO 24102 handles the allocation of the communication media.

04-06-2010 134 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

The three external interfaces of the communication infrastructure are the following:

Management interface: Middleware and applications can register to the communication
system and can announce its communication requirements.

Data interface: The transmission of the user data proceeds via this interface. This interface
is provided to middleware and applications.

Time-stamp interface: The implementation of the time-stamp service requires an interface

to a time-stamp provider, see POMA sub-project.

cmp COMM Component Diagram/

Management Input Port

Data Input Port

]7

Communicaiton

Management
(CME)

COMM

Cellular

Communication

Microwave
Communication

1

Infrared
Communication

TimeStamp

TimeStamp
Provider

Management Output Port

Data Output Port

Figure 102: COMM component diagram

The management interface and the data transmission interface are specified in the following

sub-sections.

04-06-2010

135

Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

6.4 Management interface

Application programming interface

The management interface provided by COMM is used to access CALM-specific
management functionalities, as specified in detail in the appropriate CALM ISO standards.
This interface is used by applications which are aware that they are part of a CALM system
that can manage a dynamic routing policy based on the needs coming from them. These needs
may include data rate, cost of communication, etc.

COMM Management
Interface

Reguest
\ QoS R o
parameters - <uses> - ., W
Client application

table

-

| <lUsSes>

Choose a
specific Cl

Installed

~ licies
| <USess po

Request
policy

Figure 103: Communication infrastructure management interface

An application may have special "Quality of Service" (QoS) requirements towards the
communication sub-system. These special needs are expressed via this management interface.
If the networking sub-system can satisfy these needs, then applications will be routed via the
appropriate interface chosen.

For instance, an application using some kind of voice over IP protocol may require the
networking sub-system to provide a communication channel where the maximum delay and
jitter is under some specific value (above which the application can not satisfy user needs,
because the quality of the voice would be unacceptable). This application may not be
interested in the cost of the communication (but likely this would be a tuneable parameter in a
system-wide policy configuration).

Usually, applications are not aware of the exact type and other parameters of the available
physical communication devices presented in the system. However, sometimes it may be
desirable to give the possibility for applications to directly choose a specific communication
device.

The interface described here is the low-level CVIS CALM management interface (which is
used to access the CALM management stack of the CVIS system). The API makes it possible
to:

04-06-2010 136 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Ask the list of currently available CALM-aware communication devices in the system
Set or get the QoS parameters the application uses

Set or get the CALM communication device currently used for communication by the
application

Set or get the CALM policy used for the pairing of QoS requirements and available
communication devices.

calm

calm_set_policy{policy: struct calm_policy *): int
calm_get_policy(policy: struct calm_policy *): struct calm_policy *
calm_set_gos(gos: struct calm_gos *): int

calm_get_gos(gos: struct calm_gos *): struct calm_gos *
calm_get_deviist{med_type: int): struct calm_dev **
calm_free_deviist{devlist: struct calm_dev **): void
calm_set_dev(dev: struct calm_dew *): int

calm_get_dev({dev: struct calm_dev *): struct calm_dev ~

Figure 104: Management API (CALM)

Information model

The main data structures of the management interface which are CALM based are:
struct calm_deyv.
struct calm_qos.
struct calm_policy.

The first one, struct calm_dev represents a CALM-aware physical communication device.
Applications can choose a device directly if they wish, using calm_set_dev(), and ask for the
device used for their communication channel using calm_get_dev().

The list of available communication devices can be asked using calm_get_devlist(), which
takes as a parameter the type of the devices the application wants to get. All CALM
communication devices can be asked using CALM_MED_UNSPEC as the parameter. The list
must be explicitly freed using calm_free_devlist().

A special QoS for a communication channel can be requested using the struct calm_qos data
structure. An application can ask the currently used QoS profile using calm_get_qos(), and set
a new one using calm_set_qos().

04-06-2010 137 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

<<Siruchs=
calm_gos

CALM_COST_UNSPEC: int
CALM_COST_KB: int
CALM_COST_MB: int
CALM_COST_GB: int
CALM_COST_TB: int
CALM_COST_SEC: int
CALM_COST_MIN: int
CALM_COST_HOUR: int
CALM_COST_DAY: int
CALM_COST_FLATRATE: int
CALM_COST_PERUNIT: int
CALM_QOS_BIDIR: int
CALM_QOS_UNIDIR: int
CALM_QOS_SYMM: int
CALM_QOS_ASYMM: int
cost: float

cost_currency: chard]
COost_unit: uintB_t
cost_type;uintB_t
avail_bandwidth: uint32_t
responsivensss: uint16_t
directionality: uint8_t
packetloss: uintd_t

jitter: wint16_t

<<siructs=
calm_dev

CALM_MED_UNSPEC: int
CALM_MED_21212: int
CALM_MED_21213: int
CALM_MED_ 21214 int
CALM_MED_21215: int
CALM_MED_21216: int
CALM_MED_LAN_FAST:int
CALM_MED_LAN_IP: int
med_type: uintd_t

cck_id: uintB_t

ci_id: uint32_t

users: uint16_t

<<Slruct=>
calm_policy

("calm_policy)(dev: struct calm_dev *): struct calm_dev ™

Figure 105: CALM data structures

The pairing process between applications and available communication devices is done using
some policy, which by default is set to be system-wide by the administrator. This policy is
represented by the struct calm_policy data structure. This can be influenced by an application
using calm_set_policy(). There can be several policies installed in a CVIS system, and
applications can implement their own one, after which this new policy can be chosen using
calm_set_policy() in the same way. The currently used policy can be asked using
calm_get_policy().

04-06-2010

138

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Interaction model

| Client | | calm
i i
] 1
i 1

calm_set_policy(struct calm_policy *)

-4
-4

calm_get_palicy()

i |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
1

calm_set_gos(struct calm_gos *)

calm_get_gos()

calm_get_dev()

ealm_get_devlist()

struct calm_deyv **

 J

calm_set_dev(struct calm_dev *)

calm_free_devlist{struct calm_dev **)

Figure 106: Management sequence

6.5 Data transmission interface

The data transmission interface provided by the communication infrastructure is the usual
Linux I[Pv4/IPv6 socket interface. It is the point where one can access the communication
services provided by the communication sub-system.

Applications can be native or Java applications. The interface described here is the low-level
data transmission interface (which is used to access the socket layer of the networking stack).
It can be directly used by native applications. The JVM implements the necessary classes for
Java applications to access the data transmission interface (which are not described here).

04-06-2010 139 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Applications can be client or server applications, or they can incorporate functionality for
both. Both client and server applications use this interface to

Initiate an outgoing connection
Wait for incoming connections
Send or receive messages
Tune connection parameters.

Initiating an outgoing connection is usually done by client-side applications. It is used e.g. by
web browsers to access a web server. In contrast, server-side applications usually wait for
clients to connect, and then serve the needs of the latter, e.g. sending an HTML page. An
application can implement both functionalities, e.g. peer-to-peer applications, which act both
as servers and clients at the same time.

An application can send or receive messages via an open communication channel, which is
the most usual transaction done using the data transmission interface.

To request special connection parameters, an application can influence some kind of attributes
of the communication channel. These include the sending and receiving buffer sizes in the
kernel, requesting non-blocking communication mode, etc.

COMM Data transmission
interface

Wait for
incoming
connection

Initiate
outgoing
connection

Q Send

message

Application

Receive
message

Tune
connection
parameters

Figure 107: Communication infrastructure data transmission interface

04-06-2010 140 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Application programming interface

The API to access the networking sub-system is the well-known BSD socket API, as
implemented on Linux. The API described here is the low-level BSD socket API provided by
GNU libc.

Applications should not care about the underlying networking stack, or how their message
reaches its destination. The complex networking sub-system of CVIS should be totally
transparent for them.

socket

AF_IMET: imt

AF_IMETE: int

SOCK_STREAM: int

SOCK_DGRAM: int

socket{domain: int, type: int, protocol: int): int

connect(fd: int, addr: const struct sockaddr *, addrien: socklen_1): int

bind(fd: int, addr: struct sockaddr ~, addrlen: socklen_t): int

listen{fd: int., backlog: int): int

accept(fd: int, addr: struct sockaddr *addr, addlen: socklen_t): int
getsockopt(fd: int, level: int, optname: int, optval: void *, optlen: socklen_t *): int
setsockopt(fd: int, level: int, optname: int, optval: void *, optlen: socklen_t): int
send(fd: int, buf: const void *, len: size_t, flags: int): ssize_t

recvifd: int, buf: const void *, len: size_t, flags: int): ssize_t

close(fd: int): int

Figure 108: Data API

It is very important to write applications being as agnostic with regard to the underlying
network layer protocol as possible. Neither network protocol-specific routines nor hard-coded
IP addresses should be presented in applications to make them as flexible as possible. This is
especially important for CVIS, because the large scale of mobility means that applications
will have to work in different locations with very different networking topologies and
technologies.

Information model

The key concept of the BSD socket API is the socket, which is treated under Linux the same
way as a regular file descriptor. It represents a communication endpoint, and can be created
via the socket() call. The parameters to the socket call tell the networking sub-system what
type of communication scheme the application wants to create:

The AF_INET domain tells that it explicitly wants to use IPv4.
The AF_INET6 domain tells that the application wants to use IPv6.
The SOCK_STREAM type means that a reliable communication channel is wanted.

The SOCK_DGRAM type means that no reliable communication channel is needed.
Messages sent by the application can arrive to the destination out of order, or can even be
lost.

Another key concept is the sockaddr structure, which represents the address of a socket. The
BSD socket API and the Linux kernel in its socket-related system calls use it to pass network
and transport layer addresses and other information (flow information, IPv6 scope ID, etc).
The protocol-specific socket address structures (struct sockaddr_in, struct sockaddr_in6) are

04-06-2010 141 Version 1.0

& C

VIS

CVIS Architecture and
System Specifications

casted to struct sockaddr in the API calls.

<<SIrUC=>

sockaddr
sa_family: sa_family_t
sa_data: char[14]

<<structs=
sockaddr _in

sin
sin
sin
sin

family: sa_family_t
port: in_port_t

addr: struct in_addr
zero: unsigned char(8]

Figure 109: Data socket

<<SIrUct=
sockaddr_inG

sinG_family: sa_family_t

SinG_port: in_port_t
sinG_flowinfo: wint32
sinG_addr: struct in

5inG_scope _id: uint32_t

i
addr

The flags parameter is presented in some of the socket functions. It can be:

MSG_OOB: Requests receipt of out-of-band data that would not be received in the normal
data stream.

MSG_PEEK: This flag causes the receive operation to return data from the beginning of
the receive queue without removing that data from the queue.

MSG_WAITALL: This flag requests that the operation block until the full request is
satisfied.

MSG_TRUNC: Return the real length of the packet, even when it was longer than the
passed buffer.

MSG_ERRQUEUE: This flag specifies that queued errors should be received from the
socket error queue.

04-06-2010

142

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Interaction model

The interaction model for the data transmission interface is shown in Figure 110.

| Application | socket Iaze.r

socket()

int socket

Y

bind(struct sockaddr “localaddr)

Y

connect(struct sockaddr “remateaddr)

Y

send(char "message)

Y

recv(}

char *message

close() ."F

Figure 110: Data sequence

04-06-2010 143 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

PART Ill CVIS applications

04-06-2010 144 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7 Applications overview

The following set of applications is specified in CVIS:

Dangerous goods; which support transportation of DG through Europe. The focus of the
application is on the monitoring and routing of a dangerous goods vehicle during its
journey

Parking zones; which provides two main services, one for booking urban parking zones
and one for booking highway resting areas.

Access control; which controls access of vehicles into particular regions. The basic ideas
of the access control application is to monitor vehicles approaching sensitive zones in
order to allow/deny the access, as a preventive safety measure to avoid accidents and as a
tool to control dynamically traffic conditions in restricted areas.

Cooperative traveller assistance; which provide assistance to travellers and drivers of
other vehicles, e.g. heavy goods vehicles, but not public transport and emergency service
vehicles. The assistance to be provided comprises: a) pre-trip and on-trip planning; b) on-
trip seamless service with tracking and rerouting if needed; c) vehicle data feeding to
traffic control centres.

Enhanced driver awareness; which provides awareness to travellers when they are
driving vehicles as part of the journeys and to drivers of other vehicles, e.g. heavy goods
vehicles, but not public transport and emergency service vehicles. The facilities provided
comprise: a) advice on driving conditions for the part of the road network that is
immediately ahead of the vehicle's current position; b) detection, management and
provision of advice about ghost drivers.

Information application; which provide subscription services enabling a driver to
subscribe to receive information about traffic states, incidents information and alternative
route options

Priority application; which provide priority services associated with traffic light
controlled intersections

Speed profile application; which provides speed profiles to increase efficiency of an
intersection and the traffic network

Cooperative traffic control; which optimize traffic flows in a limited area (up to 5
intersections), based on available traffic information.

Flexible bus lane; which allows a driver within its private vehicle to access a reserved bus
lane (BL) using available traffic data such as route guidance and public transport

Network assessment; which provide measuring of the performance of the network. In
particular the network assessment is aimed to: i) analyzing the current state of the system,
i1) assess the quality of the state of the network, iii) perform an off-line historical analysis,
iv) provide ability to compare performance with or without the control system working

Routing application; which provides suggestions of routes that take into consideration the
strategy of the network and the willingness of following the route.

Strategy application; which provides design of the traffic management strategy based on
traffic status and prediction, traffic demand pattern and statistical assignment.

04-06-2010 145 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Traffic control assessment; which aims at assessing the traffic model and to estimate
local traffic model parameters. It is meant to be a local application that runs in parallel to
the traffic control sub-system and that allow the system to tune the parameters, estimate
dynamic parameters and possibly to assess the behaviour of the local traffic controller.

Each of the applications is presented in the next sub-sections applying the following
viewpoints:

Overview,; which provides an overall introduction to the application and its main services

Application programming interface; which describes the logical interface specifying the
services the application provides to the end user, e.g. driver, traffic operator etc., via the
HMI developed for the application.

Information model; which specifies the application from an information perspective
describing information objects of the application domain.

Interaction model; which specifies main usage scenarios associated with the application.

High level composite architecture; which specifies the main components constituting the
application.

Deployment model; which specifies the logical deployment of the application, e.g. what
parts are deployed on a road-side unit and what parts are deployed on the vehicle.

This document (D.CVIS.3.3) includes specifications of the external interfaces and the overall
architecture. Further details as well as the internal design are specified in the corresponding
D.SP.3.2 documents.

Note that the application use cases are derived from the requirements of the D.CVIS.2.2
section 4.

7.1 Dangerous goods

The "Dangerous Goods" (DG) application and its main services are introduced in this sub-
section. Further details of the DG application can be found in the D.CFF.3.2 "Architecture
Specification" document.

7.1.1 Overview

Within the DG application the focus lies on the monitoring and routing of a DG vehicle
during its journey. The following figure includes the different use cases. A DG vehicle wants
to start its journey and has to register at a traffic management centre which is monitoring and
routing the vehicle during its trip. The traffic management centre provides route guidance to
the DG vehicle and the vehicle is sending back the information of its position and its status.

The fleet operator and further call centres like police and emergency services have the
possibility to have a look at the registered dangerous vehicles by means of a map display.

The traffic supervisor defines the DG vehicle preferred network and in case of an incident he
decides on temporary changes of this network to reroute the vehicle in an efficient and safe
way.

The subsequent figure shows an overview of the DG application.

04-06-2010 146 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

Traffic supervisor

DG preferred network

Further call centres

Traffic

Management Centre
(Monitoring, route guidance)

Map display
Route guidance

Goods & position |
information .
Goods information ﬁ
== _ a d.

Fleet operator
—

DG_vehicle with OBU

Position information

Figure 111 Overview of the DG applications

04-06-2010 147 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Main use cases and system boundary

The following diagram shows the involved actors, the use cases and the system boundary of
the DG application.

ud Use Case Model

DG_application
DG vehicle route

DG_vehicle/OBU guidance

Q

Call_centres

DG vehicles monitoring

TMC/NSP

I

Traffic_supervisor

Fleet_operator

DG vehicle
hand-over

DG preferred network
management

Figure 112: Main use cases and system boundary for the DG application

The DG application contains four use cases:

The route guidance of a DG vehicle including the registration process at a traffic
management centre.

The monitoring of a registered DG vehicle from the side of the traffic management centre.
The hand-over of a registered DG vehicle between two traffic management centres.
The navigation and routing of a DG vehicle on its preferred DG network.
The actors of these applications are the following:
DG vehicle/OBU.
Traffic management centre/navigation service provider.
Traffic supervisor.
Fleet operator.

Call-centres.

04-06-2010 148 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

7.1.2 Application programming interface

The main interfaces and their provided services are depicted in Figure 113.

cmp InformationModel /

«interface» «interface»
traffic_supervisor Call_centre
+ receives_incident_information() : void + receives_announcement() : void
+ receives_map_of_DG_vehicles() : void

«interface»
«interface» TMC/NSP
DG_vehicle/OBU

contacts_call_centre() : void
gives_link_information() : void
guidance&routing(Poition, Status) : void
hand-over_process_external() : void
provides_DG_vehicles_map() : void
receives_DG_vehicle_preferred_network() : void
receives_network_changes() : void
receives_position&status() : void
registration_confirmation() : void
registration_request() : void
routing_guidance() : void

deregistration_request() : void
position&status_information() : void
receive_route_guidance() : void
registration_request() : void

+ 4+ + +

«interface»
Fleet_operator

+ + ++ A+ +FF+ A+

+ receives_DG_vehicle_map() : void
+ receives_link_information() : void

«interface»
PSAP/Public_Service Access_Point

+ DG_vehicle_having_accident_is_announced() : void

Figure 113: DG information model

04-06-2010 149 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

An example scenario illustrating usage of the provided interfaces for the DG vehicle route
guidance use case is shown in Figure 114. The traffic management centre registers the DG
vehicle and provides route guidance.

sd CV-UC-SP3.3-0101 /

X X

:DG_vehicle/OBU "TMC/NSP ftraffic_supervisor

1
1
registration_request 1

registration_confirmation
< _______________ g_ e mmmm e mmmmmm—m———————————————— H

DG_vehicle_starts_journey

guidance&routing(p:Position, s:Status)

! receive_route_guidance J

deregistration_request |

Figure 114: Sequence diagram for the DG vehicle route guidance

04-06-2010 150 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.1.3 Information model

The figure below defines general domain model for the DG.

cd CV-UC-SP3.3-0102_domain_model /

raffi rvisor
traffic_superviso el sarine

1

TMC/NSP [

1 1..%

DG_vehicle/OBU

length: int
vehicle_loading: char

weight: int
K

Fleet_operator

-
e

1.%

PSAP/Public_service_access_point

Figure 115: Domain model for the DG vehicles monitoring

7.1.4 Interaction model

The interactions of the four main use cases of the DG application, i.e.
the DG vehicle route guidance,
the DG vehicles monitoring,
the DG vehicle hand-over,
and the DG preferred network management

are specified below using UML activity diagrams.

04-06-2010 151 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

ad CV-UC-SP3.3-0101 ~

DG vehicle/OBU AN SP/NSP/Traffic supervisor

The request contains
following information:

DG_vehicle

- current position and
o wants to start destination;
Activity Initial its journey] - vehicle characteristics; Registration
- goods characteristics;
- driver characteristics. process

Registrationﬂ
request

Confirmation is
received and
DG_vehicle starts

its journey
Confirmation
is send out
DG_vehicle No
receives routing
__& guidance J Routing

Flow Final

reaches its final

DG_vehicle }
N destination

Deregistration
request

Deregistration
process

DG_vehicleis |-

l deregisterd J

ActivityFinal

Figure 116: Activity diagram for DG vehicle route guidance

The table below describes the roles identified in the activity diagram and their responsibilities
for this particular scenario.

Role Responsibilities

DG_vehicle/OBU The DG_vehicle/OBU is responsible to send the registration
and the deregistration request to the TMC / NSP /
traffic_supervisor. During its trip the DG vehicle is also
responsible to send position & status information to the TMC.

TMC/NSP/traffic_supervisor | The TMC / NSP / traffic_supervisor is responsible for the
registration/deregistration of the DG vehicle such as the route
guidance during its trip.

04-06-2010 152 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

ad CV-UC-SP3.3-0102_2 /

DG vehicle/OBU

SP/NSP/Traffic supervisor

Call Centres Fleet operator

Activity Initial

DG_vehicle
sends
registration
request

DG_vehicle
is handed
over

egistration
process

Confirmation &
DG_vehicle starts its
journey

n

DG-Controlling

- 7

I
Check status &

DG_vehicles
map display
if
wanted/needed

status
and
position

DG_vehicleis)
controlled and follows I
the route guidance

DG_vehicle
returns on the
preferred

if

reached destination?

DG_vehicle

is handed Confirmation &

over to DG_vehicle ends
another its journe
T™MC
ActivityFinal

" - FlowFinal
Deregistration
request

needed

Accident
notices

E Information

Deregistration
process

\ position J
notice Send
message to
DG_vehicle
—
Accident
notice J

about

happened
accident

Figure 117: Activity diagram for DG vehicles monitoring

04-06-2010

153

Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

The table below describes the roles identified in the activity diagram and their responsibilities

for this particular scenario.

Role

Responsibilities

DG_vehicle/OBU

The DG_vehicle/OBU is responsible to send the registration
and the deregistration request to the TMC / NSP /
traffic_supervisor. During its trip the DG vehicle is also
responsible to send position & status information to the TMC.

TMC/NSP/traffic_supervisor

The TMC / NSP / traffic_supervisor is responsible for the
registration/deregistration and the monitoring of DG vehicles.
In any case of an incident the TMC contacts the DG-vehicle
directly. The TMC also offers a map display to further call
centres and the fleet operator.

Call-centres

The call-centres are responsible to do their jobs in the case of
an incident.

Fleet operator

The fleet operator is responsible for his fleet vehicles.

ad CV-UC-SP3.3-0103 /

DG vehicle/OBU

T™MC 1 TMC 2 Fleet operator

[—

Activity Initial

information from TMC_ 1

A

No

Region
change?

Yesl

Position and
status information

DG_vehicle drives in
region A getting needed

DG_vehicle reaches
the border to region B

status and
position if

Route guidance

and monitoring)
TMC_2
receives

handed over
information

TMC_1 recognises
that the DG_vehicle
reached the region

B and starts the
hand-over process

Gets
TMC_ 2 starts route e eien

guidance and about the
monitoring of the
DG vehicle

passed hand-
over

DG_vehicle

its journey receiving

DG_vehicle continues
guidance from TMC_2

position & status
information

ActivityFinal

Figure 118: Activity diagram for DG vehicle hand-over

04-06-2010

154 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

The table below describes the roles identified in the activity diagram and their responsibilities
for this particular scenario.

Role Responsibilities

DG_vehicle/OBU The DG vehicle is responsible to send status & position information to
the respective traffic management centre.

TMC_1 The traffic management centre 1 is responsible for the monitoring and
the routing/guidance of a DG vehicle. It makes also the border-check
and initialises the hand-over process.

TMC_2 The traffic management centre 2 makes the hand-over process and
informs the fleet operator. Afterwards it is responsible for the
monitoring and the route guidance of the DG vehicle.

Fleet operator The fleet operator is responsible for its fleet vehicles.
ad CV-UC-SP3.3-0104
Traffic supervisor TMC/NSP DG_vehicle/OBU

DG preferred network
definition R lculati
/]\ PN EEVEHENE ﬂ%{ DG_vehicle follows the
i

route guidance

Activitylnitial basic network definition

incident caused changes

TMC/NSP
receives position

information

position and status

| DG_vehicle sends
information

Receives
information about
an incident

Receives the
temporary changes
Decides on and reroutes @

temporary changes
of the preferred ActivityFinal
network

Figure 119: Activity diagram for DG preferred network management

04-06-2010 155 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The table below describes the roles identified in the activity diagram and their responsibilities
for this particular scenario.

Role

Responsibilities

Traffic_supervisor

The traffic supervisor is responsible for the definition of the preferred
network for DG vehicles. In case of an incident he decides on
temporary changes of this defined network.

TMC/NSP

The traffic management centre is responsible for the route calculation
and the routing. In case of temporary changes the traffic management
centre makes the rerouting.

DG_vehicle/OBU

The DG vehicle follows the route guidance.

04-06-2010

156 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.1.5 High level composite architecture

This chapter provides specifications of the high level composite architecture. The aim is to
describe the overall architecture of the system and the partitioning into sub-systems and
components.

The following diagram describes mainly the system components of the DG application within
the CF&F sub-project. Furthermore the connections and interfaces towards middleware
facilities are shown.

cmp Composite_modeI/DG_appIication/

CVIS/DG_application

Fleet_operator

(@)

DG wvehicle/OBU

e

TMC/NSP

Traffic_supenvisor

(o)

O

@)
O Roadside /)\ Call-centres
@)

MiddlewareFacilities

Figure 120: High level composite architecture for the DG application

04-06-2010 157 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.1.6 Deployment model

The deployment diagram below describes the logical deployment structure of the DG
Application.

dd CV-UC-SP3.3-0102_dep|oyment/

«device»
traffic_supervisor

p
<<LAN>>
1
«device» «device» «device»
<<internet>>
OBU <<WLAN>> TMC/NSP | r- —fleet_operator
1..* 1
1
<<internet>>
«device»
1] Call-centre

Figure 121: Deployment diagram for the DG vehicles monitoring

7.2 Parking zones

The parking zones application and its main services are introduced in this sub-section. Further
details of the parking zones application can be found in the D.CFF.3.2 "Architecture
Specification" document.

7.2.1 Overview

The parking zones application provides two main services, one for booking urban parking
zones and one for booking highway resting areas. Using these services, a freight vehicle
driver or a fleet operator can lookup highway resting areas and urban parking zones in a
specific geographic area, for example along a route or at a destination. The operators, who
operate the highway resting areas and urban parking zones, expose an interface, which the
driver or fleet operator uses in the booking process.

This picture provides a non-technical overview of the parking zones application which is
divided in the urban parking zones and the highway resting areas. Furthermore, the different
actors like the CVIS equipped vehicle, the urban parking zone operator and the resting area

04-06-2010 158 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

operator are illustrated.

- CVIS equﬁed vehicle

Highway Resting Area

Figure 122: Overview of the parking zone application

04-06-2010 159 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Main use cases and system boundary

The parking zones application consists of use cases for booking urban parking zones and
highway resting areas. The booking, in both cases, can be done by either a fleet operator or by
the freight vehicle driver as illustrated in Figure 123.

uc Primary Use Cases

System Boundary

Highway Resting
Areas

Fleet Operator

Urban Parking Zones

Freight Vehicle Driver

Figure 123: Use case model with system boundary for the parking zone use cases

7.2.2 Application programming interface

In the parking zones applications the driver and fleet operator are considered to be the
external actors.

Figure 124 describes the interface as seen by these actors in the urban parking zone
applications.

class External Domain Model

UrbanParkingZoneApplication

defineRoute(Location, Location) : void

lookupParkingZoneOperators(Location) : ParkingZoneOperator(]

requestParkingZone (VehicleData, int, int, long, Location) : ParkingZoneReservation[]
acceptBooking(int) : void

activateAccessControl(int) : void

deactivateAcce ssControl(int) : void

+ o+ o+ o+ o+ o+

Driver Fleet Operator

Figure 124: External interface of the urban parking zone application

04-06-2010 160 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Figure 125 exemplifies the usage of the urban parking zone services specifying interaction
scenarios from the driver and the fleet operator respectively.

sd External Actor Domain Model/
% UrbanParkingZoneApplication %
Driver Fleet Operator
: T :
alt booking by driver/ ! i
1
] 1 1
i defineRoute(origin, destination) i i
>|::| i
1
lookupParkingZoneOperator(destination) :operators E
o !
]
requestParkingZones :suggestions i i
g !
! i
acceptBooking(reservationld) ' !
I 1
T]
: ’ :
1
i ! i
1 | 1
1 | 1
i : i
alt booking by fleet operator / i !
T | . - . . |
1 H defineRoute(origin, destination) !
| o
]
i lookupParkingZoneOperators(destination) :operators
]
| my
1
i 1 requestParkingZone :suggestions
; e
]
i i acceptBooking(reservationld)
:] T
| | |
| | |
I ;]
alt no shortwave commumcatlon/ H !
]
] 1 1
i arrivalNotification(reservationld) ! i
H |
1
departureNotification(reservationld) ! '
1
]
: ’ :
1
i i i
1 . 1

Figure 125: Sequence diagram describing external actor interaction with the urban
parking zone application

04-06-2010 161 Version 1.0

<« CV

S

CVIS Architecture and
System Specifications

Figure 126 describes the interface as seen by the fleet operator and the driver in the highway
resting area applications.

class External Domain Model

O

Driver

Highw ayRestingAreaApplication

defineRoute(Location, Location) : Route

requestRestingArea(FacilityData, VehicleData, int, int, long) : RestingArea(]
selectRestingArea(int) : ResingAreaReservation

confimReservation(int) : int

cancelReservation(int) : void

lookupRe gingAreaOperator(Region) : RestingAreaOperator]

+ ok o+ o+ o+ o+

Fleet Operator

Figure 126: External interface of the highway resting area application

7.2.3 Information model

The figure below specifies the domain model for the parking zone application.

class Domain Model /

HighwayRestingArea

description: String
location: String

UrbanParkingZone

city: String
parkingZoneld: int
position: Position2D

A RestingAreaOperator
operates one or more
HighwayRestingAreas.

RestingAreaOperator

restingAreaOp

nrOfSpaces: int

A RestingArea

streetAddress: String

restingAreas: int[]

A

RestingAreaOperatorAggregator
keeps a directory of
RestingAreaOperators.

This entity is typically uilizing
the distributed directory service
facility.

position: Position2D fh:rso‘i‘a::‘)?gm?r:ce uri: String
restingAreald: int a q S
restingAreaName: String S IETEES ,/ “1 n
uri: String X A
- N s \
\\ // \‘
\
\«RP» «RP» “erl”
N , .
N ’,)
«RP» “ton - 1
.
! FreightVehicle UrbanParkingOperator
hasDangerousGoods: boolean city: String.
: length: byte | ________| country: String
s int v packGroup: short “RP» nam.e: String N
unNumber: short N = parlq.ngZoneOp.eratorld. int
vehicleld: String N - parkingZones: int]]
1.n N weight: byte N - uri: String
. N
) 1.n
-“n N
e = O-n 1
S~ L7 .
N N
< N
~“«RP»« N
L <RP» .
~. \
AN «RP»
™~ 0.1 N
S~ 1 . \ «RP»
~ \
\
ggreg FleetOperator Driver N
\\
N
«RP>» 0.n 1 0.n "
S N
N N
Ses N
«RP»~~<_ Nt

The
RestingAreaOperatorAggregator
has a lookup-interface, which
can be used by FleetOperators o
directly from the FreightVehicle.

ParkingZoneOperatorAggregator

The
ParkingZoneOperatorAggregator
has a lookup-interface, which can|
be used by FleetOperators or
directly from the FreightVehicle.

Figure 127: Domain model for the parking zone application

04-06-2010

162

Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

A brief description of the information entities is provided in the table below:

Entity Name

Entity
Abbreviation

Entity Description

FleetOperator

FO

In the context of the CF&F parking zone
application a fleet operator runs a
transport management system, which is
able to discover and connect to parking
operators.

FreightVehicle

FV

A freight vehicle contains a client system
(CVIS host platform) able to connect to
the outside world using a CALM router.

Driver

The driver interacts with the in-vehicle
CVIS host system.

RestingAreaOperator

RO

The resting area operator is a parking
operator who manages highway resting
areas.

UrbanParkingOperator

UPO

An urban parking operator is a parking
operator who manages urban parking
Zones.

HighwayRestingArea

HRA

A highway resting area is managed by and
booked via a parking provider. The
resting area contains a CVIS road-side
unit, which enable connections to its
parking operator and the freight vehicle as
well as access control.

UrbanParkingZone

An urban parking zone is an area in an
urban environment for loading-unloading
of freight vehicle. An urban parking zone
is managed by and booked via a parking
provider.

RestingAreaOperatorAggreagor

ROA

A resting area operator aggregator keeps a
registry of resting area operators. In the
parking zones applications this role can be
played by a navigation provider.

ParkingZoneOperatorAggregator

POA

A parking zone operator aggregator keeps
a registry of urban parking zone operators.
In the parking zones applications this role
can be played by a navigation provider.

04-06-2010

163

Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

7.2.4 Interaction model

The interactions of the two main use cases of the parking zones application:

Urban parking zone,

DG vehicle route guidance,

are specified below using UML activity diagrams.

act OV Role Diagram /

Request Parking Zone Make Reservation Send ETA Arrival Departure
- - - -
«flow» /«ﬂow» «flown «flow»

, JAYAN

Request Pa
Fleet

Fleet Operator

rking Zone -} [gecel ing ld]

Driver

Request P4
Dri

o A
rking Zone - y Alternative
ver

Parking Operator

Receive Request < Respond) (Evaluate ETA) Receiv e Departure
Notification
(Confirm)
Make Reservation
(Provide Alternative)

Vehicle

Send ETA Send Afrival Notification Send Departure
Notification

N

Parking Zone

Deactivate Access
Control

Figure 128 Role diagram for urban parking zone application

The table below describes the roles identified in the activity diagram and their responsibilities
for this particular scenario.

Role

Responsibilities

Fleet operator

The fleet operator or the driver is responsible for requesting an urban
parking zone.

Driver The fleet operator or the driver is responsible for requesting an urban
parking zone. The driver informs the parking operator about time of arrival
and duration for the request.

04-06-2010 164 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Role Responsibilities

Parking The parking operator is responsible for making the reservation, keeping its
Operator parking database updated.

Vehicle The vehicle provides ETA to the parking operator and receives and provides

the reservation ID number.

Parking zone | The parking zone may have access control facilities, which are controlled by
the parking operator.

act OV Role Diagram /
Request Resting Areax\make Reservation E’\ Trip Status S‘\Reconlirm Booking &Send Confirmation Receipt x Identify Vehicle \.\Leave Resting Area
«flows «flow» «ﬂ/g)w» «7% «flow» «flow»

% Relqgiest Resting Area -\

i | FleetiOperator

o

3

[_/

Driver

N

T | | |

i ™\ Receive Trip Status Provide BooKing Decision
Relquest Resting Area - H

g Driveri i

i T

: :
iReceive Request Respond Initiate Payment Sand Confirmation Pravnde Area Locatlon (Upda'f’ Parking Database)
0 : Reciept

Make Reservation 1 qulorm Payment

Provifle Trip Status ’ Receive Booking ID ProvidellD)
Receive Trip Status Identify Vehicle Inform Parking Operator

Figure 129: Diagram for highway resting area application

Parking Operator

Vehicle

Position

Request Resting Area
Automatically

Resting Area

The table below describes the roles identified in the activity diagram and their responsibilities
for this particular scenario.

Role Responsibilities

Fleet operator The fleet operator or the driver is responsible for requesting a resting area.

Driver The fleet operator or the driver is responsible for requesting a resting area.
The driver informs the parking operator about time of arrival and duration
for the request.

04-06-2010 165 Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

Role Responsibilities

Parking The parking operator is responsible for making the reservation, manage
Operator payment, keeping its parking database updated.

Vehicle The vehicle provides its position to the request maker provides status of the

trip to the driver and the resting area and receives and provides the
reservation ID number.

Resting Area The resting area is responsible for identifying and authorizing the vehicle.

7.2.5 High level composite architecture

The composite diagram for the parking zones application shows the in vehicle service
component in relation with the other system components especially actors of the parking
zones application.

composite structure Internal Structures /

Parking Zones

RestingAreaOperator —‘C))_ FleetOperator —©— UrbanParkingOperator

O

Vehicle

Figure 130: High level composite architecture for the parking zone service

04-06-2010 166 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.2.6 Deployment model

The deployment model describes the logical deployment of the services of the parking zone
application onto the CVIS infrastructure.

deployment Deployment Model /

RSU

Center

RestingArea

RestingAreaOperator

Vehicle

ParkingZonesInVehicleService

RSU Center

ParkingZone UrbanParkingZoneOperator

Figure 131: Deployment diagram of the parking zone applications

7.3 Access control

The access control application and its main services are introduced in this sub-section. Further
details of the access control application can be found in the D.CFF.3.2 "Architecture
Specification" document.

7.3.1 Overview

The basic ideas of the access control application is to monitor vehicles approaching sensitive
zones in order to allow/deny the access, as a preventive safety measure to avoid accidents and
as a tool to control dynamically traffic conditions in restricted areas. This could be achieved
by means of an "always-on" seamless communication between incoming vehicles and the
infrastructure. This is depicted in Figure 132.

04-06-2010 167 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

Sensitive Zone Developed by Application SP
Management Provided by test site
Center
R N , .
- ' Wi rele§s/ wired
- - Application C1/C2 N link
- ~ /
-
- Messages N
(~ /no go!
Diagnosis / Prognosis §
information
Application C1/C2 & ‘engrange comm N
o Vehidle identification & ~
Monitoring Area diagonstics \
Entrance Trigger
~
~

~

Application C1/C2
Access Control Point

Vehicle with On-board system

Figure 132: Access control

Involved CVIS technologies are dynamic geo-fencing policies and simultaneous wireless data
transaction over two different bearers: medium range V2I & 12V and long range bi-directional
"Vehicle to Control Centre" (over 2G-3G network).

After detecting the entrance inside a predefined monitoring area a remote monitoring session
is activated and the vehicle is tracked while approaching the critical access area. The
approaching vehicle automatically transmits self-diagnostics and driving status data to the
access control centre.

Based on predefined policies and real time potential risk assessment, the access control centre
provides the approaching vehicle with preventive grant or denial to access the critical area.

Information, logs and feedback on the decision taken must be available to be sent to the fleet
manager and to the driver.

Two uses cases have been defined:
Approaching access control area,

Decision making and information feedback.

04-06-2010 168 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

These are specified in the use case model below.

ud Use Case and Boundary /

>0

AC_application
Vehicle

Approaching
Access Control
Area

Decision
Making and
Information
Feedback

SensitiveAreaOperator

N7

>0

RoadSideUnit

Figure 133: Main use cases and system boundary for the access control application

The use cases are:

Approaching access control area; In this use case the vehicle equipped with the CVIS
platform, transmits vehicle diagnostics data and driving behaviour to the access control
manager while approaching the sensitive area.

Decision making and information feedback; In this use case the vehicle equipped with the
CVIS platform, which interacts with the access control manager to obtain access granted or
denied to the predefined area. Information feedback on the decision taken will be sent to the
fleet manager (and or other interested parties) and to the driver.

The main actors using the system are:
Driver.
Vehicle.
RoadSideUnit.

SensitiveAreaOperator.

04-06-2010 169 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.3.2 Application programming interface

Interface specifications are an essential part of the architecture and system specification as the
interactions are performed through the interfaces. The cooperation and relationships between
the different parts of one system are enabled by these interfaces. The following diagram gives
an overview of the interfaces recognised in connection with the access control application.

In the access control applications the "Driver", "Access Control operator" and "Fleet Manager
operator" are considered to be the external actors.

The figure below describes the interface as seen by these actors in the access control
applications.

cd Class Model /

External Interface Model for Approaching Use Case

ApproachingAccessControlArea

+ DetectVehicleApproach: CVIS_Vehicle
+ EstablishVehicle2Centre_Connection: int
+ GetVehicleParameter: int

Driver

Sensitive AreaOperator

External Interface Model for Decision Use Case

DecisionMakingandinformationFeedback

AccessDenialNotify: int
AccessGrantNotify: int ‘AeetOperator
DetectVehicleExit: int

GetAccessPolicy: DecisionMakingandInformationFeedback
ProvideCollectedParameter: int
Providelnstructions2Driver: int

:Driver

+ o+ o+ o+ o+ o+

SensitiveAreaOperator|

Figure 134: External interface of the access control application

04-06-2010 170 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

7.3.3 Information model

The figure below specifies the domain model for the access control application.

class Domain Model
Operator

SensitiveArea

city: String
country: String
name: String
uri: String

AllertMessage

NotificationMessage

message: String

accessGranted: boolean

Vehicle

hasDangerousGoods: boolean
id: ID

lenght: byte

packGroup: short

unNumber: short

vehicleld: String

weight: byte

Driver

Figure 135: Access control information model

04-06-2010

171

Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

7.3.4 Interaction model

The interactions of the two main use cases of the access control application:
Approaching access control area,
Decision making and information feedback,

are specified below using UML activity diagrams.

act Role Diagram Approaching Access Control Area/
Sensitive Area Vehicle Detection and Alert to Sensitive Area
Approaching Zone Identification Operator
Detecton @ p-""c- =2) JTUTTS
flow:
/I] : H
1 1
—— S
A i oo
! | 1 H ’ |
| i / ! oo
i i i ;
1
: L Send contintously
. diagnostic and operative
SA approaching zone s Ith | o
detection through map gSondiholy) parameters to SAQ
tchi identifi¢ation] ! f
4 matching parampters | 1 !
g P i |
3 :] :
@ f /
[
Lo ; !
- - |
L : :
| ! |
! / H
| T |
i '
Vehicle Detection ' 1
1
: |
ert the SAO the vehicle
ntered the approaching
zone
Send needed SAO link
info
]
g
o
q
@
-3
c
3,
Starts the communication
with the vehicle
&b
a
9
E.
@

Figure 136: Role diagram for approaching access control area

04-06-2010

172

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The table below describes the roles identified in the activity diagram and their responsibilities
for this particular scenario.

Role Responsibilities

Vehicle The vehicle is responsible for identifying its
entrance in the monitoring area by means of
map matching technology.

Sensitive area operator When alerted about vehicle entrance in the
monitoring area, he manages the monitoring
process.

Road-side unit The road-side unit is responsible for

identifying its entrance in the monitoring of
the vehicle by means of geo-fencing
technology and transmitting the related
connection parameters to the vehicle.

act Role Diagram Decision Making And Information Feedback /

Vehicle Diagnostic an Operative Data Update' proaching to the exit af Notification
Operative Data Sensitive Area
Evaluation - == >
«flow» flow «flow»

5 5B 5

rougth the map matching
it understands it is exiting
the SA

1

1

Send continuosly the i
operative data !

1

_____________________________—l>

b

<
i L
q Warn the SAO)
a
)
)
)
)
)
1
!
Check the cpnsistency |
of data Create and $end a repot
))
i |
1 /
I |
)
[] 1
Allow the vehicle to !
E access the SA i
)
! Notification in case of
f access denied
b Send the notification
a
a.
E.
dq
b
®
1Y

Figure 137: Role diagram for decision making and information feedback

04-06-2010 173 Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

The table below describes the roles identified in the activity diagram and their responsibilities
for this particular scenario.

Role

Responsibilities

Vehicle

The vehicle is responsible for formatting the on-board parameters to
the access control centre by using the proper policy.

Sensitive Area
Operator

The sensitive area operator is in charge of collecting the parameters
from the monitored vehicles, processing them according to the
applicable policy and managing the access to the area.

7.3.5 High level composite architecture

The access control composite diagram specifies the main system components of the access

control application.

class Domain Model/

CVIS/AC_application

Vehicle

"AccessControl”
Center

(@)

Figure 138: High level composite architecture for the access control application

04-06-2010

174 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.3.6 Deployment model

The deployment models describe the logical deployment onto the CVIS infrastructure, that is,
the deployment of the above specified components to physical nodes.

dd Deployment Model J

Vehicle . A ntrolCentr:
wireless ccessControlCentre

AccessControlinVehicle wired IAccessControlOperato!

]

wireless

RoadSideUnit

AccessControl

Figure 139: Deployment diagram of the access control applications

All wired communication can be replaced with wireless communication. Wireless
communication can not be replaced by wired communication.

7.4 Cooperative traveller assistance

The "Cooperative Traveller Assistance” (CTA) application and its main services are
introduced in this sub-section. Further details of the CTA application can be found in the
D.CINT.3.2 "Architecture Specification" document.

7.4.1 Overview

The CTA application consists of three main services / sub applications that will provide
assistance to travellers and drivers of other vehicles, e.g. heavy goods vehicles, but not public
transport and emergency service vehicles. The services provided by each of the CTA sub
applications are as follows:

Pre-trip and on-trip planning: Drivers can plan their trips across the inter-urban road
network according to their need to travel, their specific origin and destination within the
Inter-urban road network, plus the current and forecast traffic conditions. In addition
drivers can change their previously prepared trip plans, or produce plans for the first time,
whilst their journeys are in progress.

On-trip seamless service with tracking and rerouting if needed: the service centre takes
care of drivers' requests providing information and (re)routing guidance depending on
individual driver preferences and vehicle characteristics.

Vehicle data feeding to traffic control centres: the collection of vehicle and planning
data enhances the determination of current and forecast traffic conditions so that they can
be combined and used in the preparation of trip plans. This data can also be used to
calculate strategies to assist with the management of the traffic using the Inter-urban road

04-06-2010 175 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

network.

The UML use case model with the system boundary for CTA is shown in Figure 140.

04-06-2010 176 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

uc CTA Use Case Model /

uc Prepare acceptable and reliable travel and travel times /

UC-SP3.2-0001
Forecast traffic
demand

/
%

Traffic Manager

- UC-sP3.2:0013 .
: Traffic Management :
K Centre

(fromUC 1,7, 9, 13)

UC-SP3.2-0002
Forecast available
road capacity

Road Operator

UC-SP3.2-0012
Guard Centre

Balance traffic and
polution and set
traffic demand
strategy

* UC-SP3.2-0014 *

;7 UC-SP3.2-0015
: Vehicle Platform

UC-SP3.2-0005
Support pre-trip
planning

Service Centre

UC-SP3.2-0006 Pre-

trip planning

UC-SP3.2-0004
Harmonize taxing
and tolling

@)

e

Service Provider

/Traveller

Guard

uc Safeguard acceptable and reliable travel and travel times/

UC-SP3.2-0007
Forecast traffic
ituation on the road

O _+ .

UCSP3.20013 .
-affic Management

Traffic Manager Centre

(fromUC 1, 7, 9, 13)

IC-SP3.2-0009 Set'
traffic management
strategy

~—

Road Operator Assess interruptions)

in available road
capacity

~ UC-SP3.2-0015
Vehicle Platform

ﬂ&ad operator cen(}'ev

UC-SP3.2-0010
Support on-trip
planning

UC-SP3.20014
Service Centre

C-SP3.2-0011 On
trip cooperation and
planning

Service Provider

/Trav eller

Figure 140: CTA use case model with system boundary

04-06-2010

177

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The use cases are as follows (for elaborated descriptions of the use cases see D. CINT
D2.1):

Forecast traffic demand: Forecast the traffic demand on the inter-urban road network.

Forecast road capacity: Forecast the available road capacity on the inter-urban road
network given the planned road construction works and the forecasted weather conditions

Set traffic demand strategy: Given the forecasted availability of road capacity and the
forecasted traffic demand, set the boundary conditions for the acceptable traffic demand on
the interurban road network.

Harmonising taxing and tolling: Harmonising taxing and tolling to allow travellers to
plan their trip taking taxing and tolling into account

Support pre-trip planning: To support travellers in planning their trip on beforehand.
Pre-trip planning: To support travellers in planning their trip on beforehand.

Forecast traffic situation on the road: Forecast the traffic situation on the interurban
road network

Assess interruptions in available road capacity: Forecast the interruptions in the
available capacity in the interurban road network, due to e.g. weather conditions,
congestion, bridge operations, smaller road works, et cetera.

Set traffic management strategy: Forecast the interruptions in the available capacity in
the interurban road network, due to e.g. weather conditions, congestion, bridge operations,
smaller road works, et cetera.

Support on-trip planning: Support travellers, e.g. vehicle drivers with their on-trip
planning

On-trip cooperation (planning): Support travellers, e.g. vehicle drivers with their on-trip
planning.

Support guard by guard service centre: To support the guard in building up an image of
the forecasted quality of mobility and environment and to set a traffic demand strategy.

Support traffic manager by traffic management centre: To support the traffic manager
in building up an image of the forecasted traffic demand on the interurban road network
and of an image of the currently evolving traffic situation on the interurban road network.

Support service provider by service centre: To support the service provider in
supporting travellers, e.g. vehicle drivers in their on-trip planning.

Support traveller, e.g. vehicle driver by vehicle: To support the traveller, e.g. vehicle
driver in their on-trip planning.

The actors and their needs and responsibilities are described in the following:

"Traffic manager: This is a human entity that manages the operation of the CINT (and
other) applications forming the traffic management system located in the "Traffic
Management Centre" (TMC) that is responsible for the inter-urban road network. The
traffic manager is able to manage how the applications in the TMC operate and the
information that is made available to vehicle drivers and travellers. Additionally the traffic
manager can decide on the way that vehicles are able to use the network, e.g.
OPEN/CLOSE lanes, and set speed limits, etc.

04-06-2010 178 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Traveller: This human entity represents the vehicle driver when that entity is not driving
its vehicle. Its main purpose is to enable the vehicle driver to carry out pre-trip planning
from outside the vehicle. For this purpose the traveller will interface with the CINT
applications using a mobile system. This may be a PDA or a static computer such as a PC.
If the traveller chooses to do their trip planning whilst in the vehicle, then will become the
vehicle driver human entity - see definition below.

Road operator: This role is responsible for the condition and usage of the interurban road
network. It will manage the way that the inter-urban road network operates and the
provision of information to the CINT applications in the traffic management

Service provider: The service provider is a physical entity or an organisation that controls
a series of physical entities that can run applications forming part of the CINT system.
These applications are capable of providing "services" to end users. For CINT these
"services" will provide information directly to the end users about relevant aspects of the
dynamic traffic situation, current speed and other regulations. There will also be "services"
for trip planning and other similar facilities. There may be one service provider from which
all these types of information are available, or several providers from which one or a range
of types of information are available. Any of the types of information may be provided to
all end users either on a commercial (subscription) basis through a service centre (see
above), or free of charge.

Guard: (Guard for mobility and QoE): - this entity represents the government
departments and organisations that are responsible for safe guarding the quality of mobility
and the environment in a country / region / municipality. Typically this entity will be
concerned with the way in which mobility is provided and the quality of the environment
over the longer term (5, 10, 15 years).

04-06-2010 179 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.4.2 Application programming interface

The methods exposed at the vehicle and service centre side respectively are specified in
Figure 141.

Vehicle ServiceCentre
«interface> interface
HMIManagerinterface

OnTripPlanningManagerinterface

newEventMsg(String) : void
showLoginPanel() : void
showOnTripPlanning() : void
showPanel() : void
showPrePlanningPanel() : void
wrongRouteMsg(String) : void

+ checkPlannedTravel(TravelPlan) : void
startPlannedTravel(int) : void
+ updatePlannedTravel(int) : void

+

+ + + + + +

«interface»
prePlanningManagerinterface

«interface» + confirmTravelPlan(TravelPlan) : void
Planninainterface + modify TravelPlan(int) : void
g + rankedTrajetoriesRequest(String, String) : RoadNetworH
+ configureTravelPlan(TravelPlan) : void + travelPlanRequest(int, TravelPlan) : RoadNetwork
+ getNegotiableTravelParam() : void
+ startOnTripPlanning() : void -
+ startPrePlanning() : void «interface»
+ updateTravelRoute(RoadNetwork) : void routingManagerinterface
+ setPosition(int, Coordinate) : void
«interface» «interface»
eventsinterface loginManagerinterface

+ newEvents(Event) : void getlListService(int, int) : void
loginToServiceCentre(int, int) : Service[]
negotiateServiceParameters(int) : void

selectService(int) : void

+ + + +

Figure 141: CTA API

The provided methods are elaborated in the following tables.

HMIManagerInterface (vehicle)

Method Type Notes

newEventMsg (String) public: void Show a new event

showLoginPanel () public: void Show login panel

showPanel () public: void Show generic panel

showPrePlanningPanel () |public: void Show PrePlanning Panel

wrongRouteMsg (String) | public: void Warning at the driver because out of
route

showOnTripPlanningPanel |public: void Show the OnTripPlanning Panel

0

04-06-2010 180 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

PreOnTripPlanningInterface (vehicle)

Method Type Notes

configureTravelPlan public: void This method allows setting the travel

(TravelPlan) parameters. TravelPlan is a public class
to be defined.

startPrePlanning () public: void This method starts the PrePlanning
component.

startOnTripPlanning () |public: void This method starts the OnTripPlanning
component.

getNegotiableTravelPara |public: void This method gets the available negotiable

m () travel parameters.

updateTravelRoute public: void This method allows updating a planned

(RoadNetwork) travel.

eventsInterface (vehicle)

Method Type Notes

newEvents (Event) public: void This method receives new events sent by
the eventsManager component on the
service centre

prePlanningManagerInterface (service centre)

Method Type Notes

travelPlanRequest (inf, |public: This method manages the travel plan

TravelPlan) RoadNetwork request coming from vehicles.

rankedTrajetoriesRequest | public: This method manages the ranked

(String, String) RoadNetwork([] |trajectories request coming from vehicles

modifyTravelPlan (inf) |public: void This method allows the modification of
planned travel.

confirmTravelPlan public: void This method manages the confirmation of

(TravelPlan) a travel plan.

04-06-2010 181 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

OnTripPlanningManagerInterface (service centre)

Method Type Notes

startPlannedTravel (int) |public: void This method manages new vehicles that
start planned travel.

checkPlannedTravel public: void This method allows the checking of
(TravelPlan) planned travel.

updatePlannedTravel public: void This method allows the modification and
(int) update planned travel

routingManagerInterface (service centre)

Method Type Notes

setPosition (int, public: void This method saves the actual position of

Coordinate) each vehicles connected to the service
centre.

04-06-2010 182 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

7.4.3 Information model

The following figure shows the high level domain information model for the "Co-operative
Traveller Assistance" (CTA) application.

Travel:Vehicle

- vehiclelD: int
I;raﬂicManagemenlCentre: - vehicleType: int

TrafficControl

TrafficManagementCentre::|
TrafficForecast

T 12T IPI1
- trafficControlID: int L ravel:fravel™an
Traffic Condition:: - endLocation: int
- o | N
TrafficCondition - Travel:VehicleDriver *PAY - isRouteSelected: boolean
- capacity: int +| - plannedTimeofArrival: int
- intensity: int - driverlD: int - plannedTimeOfDeparture: int
- period[0..1]: int . - isAllowsTracing: boolean - rankingOfRoadCapacity: int
- reliabilityOfTravelTime: int 1N - rankingOfTrafficintensity: int
- speed: int " +plan| - route: Route
N . TrafficManagementCentre:: - dartLocation: int
- timestamp[0..1]: int +forecastConditionin 3 . .
- travelTime: int JiaffichMeasure - travelPlanID: int
i - trafficMeasurelD: int - typeOfTravel: int
1
. Travel:Location +define
+affect traffic
condition w [« * - locationID: int
) +from | Road Netw ork::Node
Road Netw ork::Arc
Traffic Event:: i - nodelD: int 1 idestinatiom
TrafficEvent +historicEventent —— - €dgelD: int +to[- x: int
— *| - priority: int - yint e y
- description: int |« * C 2 int
- DateTime: i S
enabateTim .I-m 1.\ Travel:Travel
- startDateTime: inf| {ordemad]
- trafficEventiD: int -/ foreseenTimeOfArrival: int
- timeOfDepature: int
+| - travellD: int
Routes::Route
Traffic Management +p Route
Strategy::ODRelation - arc Arc] +build 1
- routelD: int Reit
- description: String +alternativeRoute osition::
as Map::M . i
- intensity: int \ . EREAED sinsert Coordinates
- odRelationID: int wongin p———
- period: int 1 _ - int
- priority: int destinati Traffic Management v 1 \
' +destination - -z ini
— Strategy::Area
- arealD: int
- description: String

Figure 142: Domain information model for CTA

D.CINT.3.2 provides detailed descriptions of these concepts.

04-06-2010 183 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.4.4 Interaction model
This section provides the main interaction processes of the CTA application at a high level.
More elaborated descriptions are provided in D.CINT.3.2.

The activity diagram in Figure 143 provides the overall description of the interaction process
carried out to fulfil the pre-trip planning and the support on-trip planning use cases.

act Activity CV-UC-SP3.2-0006 & 0010 Pre-trip planning & Support on-trip planning/

Vehicle driver CTA: in car device CTA service provider CTA:TMC
idle 3. connection to service
provider
oo

| «structure»
| 5. trip request

e

«structure»
4. Tracing request

Final confirmation
9. reject planning

[rejected]

[accepted]
i 8. confirm planning '

Figure 143: Activity diagram for pre-trip planning and support for on-trip planning

7 conforrp travel

04-06-2010 184 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

The activity diagram in Figure 144 provides the overall description of the interaction process

carried out to fulfil the on-trip cooperation (planning) and the support traveller, c.q. vehicle
driver by vehicle use cases.

act Activity diagram for CV-UC-SP3.2-0011 On-trip cooperalion/

Vehicle Service Centre Traffic Control Centre

Find information on
request travel

|
oo
Connect to selected J/
Service Centre
oo
Idle

Negotiate tracing -
oo

«datastore»
Integrated

/ information

Negotiate vehicle data
provision

Service set up

Communicate information
on requested travel
oo

Stop service request

N\ ' Inform of new travel and
Startservice o available
[Accepted]

and data
/) oo
Confirm \
travel

\ VA

=
Service
oo

Vehicle data prov is'gn |

NV

«datastore»
Service information

Shows details to
driver o o

[Rejected]

on travel

Figure 144: Activity diagram for on-trip co-operation

04-06-2010 185 Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

This activity diagram depicts two main phases:
Initial planning (service set up);
Service while on travel.

In the initial planning a driver may:
Load a previous defined travel plan;
Update a previous defined travel plan;
Create travel plan from scratch.

Despite of the previous cases the travel plan is always updated:
By confirmation of the travel;
By setting the real departure time;
By sending the updated traffic conditions.

The driver starts selecting a service centre in a list. How the list is created and maintained is
out of the CVIS project scope. There may actually be more than one service centre and the
driver may have to make a choice between two or more competing centres

The activity diagram in Figure 145 provides the overall description of the interaction process
carried out to fulfil the support pre-trip planning and the support service provider by service
centre use cases.

act Pre-Trip Planning 5 & 14 /

Traffic Management Centre Crrivrer Service Proovider ToldTax chargéuard fgr mobility & Quality of EnvifonmentRoad operators

Determine
pricing
scheme

Determine
whctivated .- rlillD
schemex”

2

Activated d’e’r;nand strate
adatastores g il o

manage LN IR - "
traffic :;: Operational {_‘ e Determine
Tt G datastore [[0 _TTTTTmToe-- Rty o S —
astore «Road operator demand strategys - q-- - {demand strategy
wChosan plan':o E
. i
,

Request
possible
trawel plans

dermand
strategy

Make trawvel
plansz

Figure 145: Activity diagram for trip planning and service support

04-06-2010 186 Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

The activity diagram in Figure 146 provides the overall description of the interaction process
carried out to fulfil the harmonising taxing and tolling use case.

act Tax & Toll

Traffic Management Centre Tall Charger Semice Provider Crriwer

. wdatastares I X d stz
Monitar Traffic Set Pricing Scheme Operational mguire roa s
I — .
datastore

Figure 146: Activity diagram for tax and toll harmonisation

04-06-2010 187 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.4.5 High level composite architecture

The high-level composite architecture for the "Co-operative Traveller Assistance" (CTA)
application is shown in Figure 147.

composite structure CTA High level composite diagram/

CTA Application

InVehicleSystem

HMIManager LoginManager PrePlanningManager

OnTripPlanningManager| | gyentManager RouteManager

/Cj \O
7] J\
HMI (FOAM)
@\ 63 Map and Positioning (Pow%:l

Service Provider |

LoginManager Pre/OnTripPlanningManager /

m) TrafficData (COMO)

EventsManager RoutingManager

DataCommunication(FOAM) _(:

TrafficManagementCentre

Figure 147: High level composite diagram for CTA

The CTA application is composed of two parts. One part runs on the vehicles and the other
part runs on one or more service providers.

The CTA application on the vehicles is composed of the following six components:

1. HMI manager: this component collects and synchronizes all signals coming from
other components in order to use the single canvas provided by FOAM technology
sub-project;

2. PrePlanning manager: this component deals with the pre-planning service allowing
the driver to configure the travel parameters, e.g. origin, destination, departure time,
etc.;

04-06-2010 188 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

3. OnTripPlanning manager: this component deals with the onTrip-planning service
allowing the driver to modify one or more parameters of a planned travel or to plan a
travel just before starting to drive;

4. Event manager: this component receives the new traffic event from a connected
service provider and shows them to the driver (eg. updated map, text to speech, etc.);

5. Route manager: this component checks periodically the position of the vehicle, using
the features provided by the POMA technology sub-project, and warns the driver if
they are out of the planned route.

The CTA application on each service provider involved in the CTA environment is composed
of the following four components:

1. Pre/OnTripPlannig manager: this component manages the PrePlanning and OnTrip
Planning configuration phases providing the drivers with routes and ranked
trajectories;

2. Events manager: this component finds out and elaborates new traffic events and
sends event report to all those vehicles running in the area related to the event.

3. Routing manager: this component provides vehicle with the routing engine.
7.4.6 Deployment model

See Figure 147.
7.5 Enhanced driver awareness

The "Enhanced Driver Awareness" (EDA) application and its main services are introduced in
this sub-section. Further details of the EDA application can be found in the D.CINT.3.2
"Architecture Specification" document.

7.5.1 Overview

The EDA application consists of two main services/sub applications that will provide
awareness to travellers when they are driving vehicles as part of the journeys and to drivers of
other vehicles, e.g. heavy goods vehicles, but not public transport and emergency service
vehicles. Information may be sent to a single driver, or a group of drivers. The grouping of
drivers may be by geographic location, e.g. a particular portion of the inter-urban road
network, or some other parameter, e.g. vehicle type. The services provided by each of the
EDA sub applications are as follows:

Driving advice: provides the driver with information about driving conditions (speed
limit, hazard information) for the part of the road network that is immediately in the
vicinity of the vehicle's current, once position and trajectory have been taken into
consideration. The intention is to give drivers advanced warning of any changes to the
conditions under which they are currently driving, e.g. changes in weather conditions, road
conditions and speed limits and headway, plus advanced notification of traffic queues,
whether they are a product of the current traffic conditions, or due to an incident of some
type. Speed warning is used as the example service since the delivery of other information
such as hazard information is directly analogous to the delivery of speed information.
Expanding the project to accommodate all information types introduces complexity for no

04-06-2010 189 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

learning gain.

Ghost driver detection and management: Irregular event management enables the
reporting of exceptional circumstances directly to the driver; this might include emergency
braking of a vehicle ahead or perhaps an upcoming traffic incident. This is exemplified by
ghost driver detection and management which enables ghost drivers to be detected either
by road-side units, vehicles, or their drivers. Once detected traffic managers can initiate the
appropriate action to warn approaching vehicles and the recovery of the ghost driving
vehicle by the emergency services. Warnings of "Ghost driver ahead" can also be provided
directly to approaching vehicles.

The advice is provided to drivers either directly from the service centre to units in the
vehicles, or through road-side units. These can again provide the information to in-vehicle
units, or through road-side displays.

04-06-2010 190 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Main use cases and system boundary

The UML use case model with the system boundary for EDA is shown in Figure 148.

uc EDA Use case diagram

/

Vehiclenriv}r\

CV-UC-SP3.2-0031

incident by Traffic
Management Centre

CV-UC-SP3.2-0017
Informing vehicle driver
about current speed limi

CV-UC-SP3.2-0020
Detection and managemen
of Ghost driving by the

¢hicle and Vehicle Drivg

N
«include»
N

Participation of vehicle i
detection and managing
host driving by own ang

CV-UC-SP3.2-0021
nforming (Other) Regular
Vehicle Driver about a
Ghost-driver

Managing Ghost-driver

CINT.EDA

e
«include»

CV-UC-SP3.2-0028
Providing traffic flow
related information to
Xehicle driver by Serviceg
Centre

CV-UC-SP3.2-0029

other vehicle

_.--«include»
4

CV-UC-SP3.2-0027
Providing traffic flow
related information to
Vv ehicle driver by Traffic

CV-UC-SP3.2-0022
Managing Ghost driving
by the Traffic Manager

CV-UC-SP3.2-0019
Providing traffic flow
related information to
vehicle drivers by

Service provider

CV-UC-SP3.2-0030
Participation of Road Side!

\\
X

CV-UC-SP3.2-0026
Providing traffic flow
related information to
vehicle driver by Road
Side Controller

CV-UC-SP3.2-0018
Managing traffic flow by
Traffic Manager

ServiceCentreMgr

RoadSideController

\
|

TrafficMgr

PSAP1
ServiceCentreMgr

CV-UC-SP3.2-0023
Informing the PSAP-1

about a Ghost-driver

;.
['/«mvo kes»

CV-UC-SP3.2-0032
Managing Ghost-driver
incident by PSAP-1
Service Centre

«include» «include»
/ N

CV-UC-SP3.2-0024
Informing the PSAP-2
about a Ghost-driver

~

«include»
L’

CV-UC-SP3.2-0025
nforming the Emergency
Vehicle Driver about a
Ghost-driver

N
«invokes»
<

CV-UC-SP3.2-0033
Managing Ghost-driver
incident by PSAP-2
Service Centre

PSAP2
ServiceCentreMgr

Figure 148: EDA use case model with system boundary

04-06-2010

191

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The use cases are as follows (for elaborated descriptions of the use cases see D. CINT
D2.1):

Informing vehicle driver about current speed limit: The goal of this use case is to
encourage the driver to behave lawful and adaptable to the current speed limit rule, plus the
minimum headway coming with this speed limit. It is intended to tune the driving to
achieve optimal, i.e. harmonized and fluid, traffic flow.

Managing traffic flow by traffic manager: The goal of this use case is to provide
required information and tools for a traffic manager to optimize, i.e. harmonize and keep
fluid, the traffic flow in a specific area

Providing traffic flow related information to vehicle drivers by service provider: The
goal with this use case is to open an information channel from one or several service
providers to the vehicle driver for specific, high value services and information which
affect the driving time and the traffic flow.

Detection and management of ghost driving by the vehicle and vehicle driver: The
goal of this use case is to prevent, detect and manage ghost driving by informing the
vehicle driver and other actors with relevant information

Informing regular vehicle driver about a ghost driver: The goal of this use case is to
inform other vehicle drivers approaching a ghost driver and using the vehicle as a
dispatcher of the incident to relevant actors.

Managing ghost driving by the traffic manager: The goal of this use case is to provide
relevant information and tools for a traffic manager to solve the problem situation which is
associated with ghost driving.

Informing the PSAP-1 about a ghost driver: The goal of this use case is to alarm PSAP-
1 for ghost driver.

Informing the PSAP-2 about a ghost driver: The goal of this use case is to react in time
for saving lives due to high risks for accident assigned to ghost driving.

Informing the emergency vehicle driver about a ghost driver: The goal of this use case is to
make it easier for PSAP-2 to reach the risk zone and perform necessary actions.

Providing traffic flow related information to vehicle driver by road-side controller:
The goal of this use case is provide required information and tools for a road-side
controller to broadcast dynamic or static traffic control information to the approaching
vehicles.

Providing traffic flow related information to vehicle driver by traffic management
centre: The goal of this use case is to create a direct link between traffic supervisors and
the involved vehicle drivers in the daily traffic to maximize recourse, e.g. roads, utilization
for efficient flow in the traffic.

Providing traffic flow related information to vehicle driver by service centre: The goal
with this use case is to provide access to specific information by the vehicle driver or other
actors produced by a specialized service centre.

Participation of vehicle in detection and managing ghost driving by own and other
vehicle: The goal of this use case is to prevent, detect and manage ghost driving by
informing the vehicle driver and other actors with relevant information.

04-06-2010 192 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Participation of road-side controller for assisting in a ghost -driver incident: The goal
of this use case is to specify the role and participation of a road-side controller in a ghost -
driver situation.

Managing ghost -driver incident by traffic management centre: The goal of this use
case is to specify the information flow to and from traffic management centre as the
reaction to ghost -driver incident.

Managing ghost -driver incident by PSAP-1 service centre: The goal of this use case is
to specify the information flow to and from a PSAP-1 service centre in the case of ghost
driving.

Managing ghost -driver incident by PSAP-2 service centre: The goal of this use case is
to manage and guide the emergency vehicles needed to abate the event.

The actors and their needs and responsibilities are described in the following:

"TrafficMgr: This is a human entity that manages the operation of the CINT (and other)
applications forming the traffic management system located in the traffic management
centre (TMC) that is responsible for the inter-urban road network. The traffic manager is
able to manage how the applications in the TMC operate and the information that is made
available to vehicle drivers and travellers. Additionally the traffic manager can decide on
the way that vehicles are able to use the network, e.g. OPEN/CLOSE lanes, and set speed
limits, etc.

ServiceCentreMgr: This is a human entity that manages the operation of a service centre
system. The service centre manager can regulate how the responses to requests from the
vehicle drivers (or travellers) are provided by the CINT applications running in the service
centre. The manager can also provide data for use by these applications.

PSAP1ServiceCentreMgr: A service centre manager responsible for access point 1. This
access point can be used by travellers and other people to report incidents and other forms
of emergency. It can also provide information to travellers and others about incidents that
have been detected by other means.

PSAP2ServiceCentreMgr: The same as the PSAP1 service centre manager. The second
access point is included to indicate that all these services do not have to be provided by the
same service provider and to enable the exchange of information and data between
different instances to be shown.

RoadSideController: This represents one or more physical entities that are situated at or
close to one or more points at the side of the inter-urban road network. These entities are
capable of displaying information when requested to do so by applications within the
system. The displayed information may comprise either an indication that a lane is OPEN
or CLOSED (international symbol for CLOSED is a red "X"), a speed restriction, or a
message. With the exception of the CLOSED indication, all other outputs may be either
compulsory (internationally indicated by a red ring around the display and/or flashing red
lights) or advisory (internationally indicated by flashing yellow lights). A message will be
a text string advising vehicle drivers of a particular situation that exists ahead of them in
the inter-urban road network.

VehicleDriver: This is the human entity that controls a licensed vehicle operating on the
inter-urban road network and is able to interact with CVIS applications in the vehicle.
Operators of private, freight, public transport and emergency services vehicles shall be

04-06-2010 193 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

included. The entity shall originate driver requests to, and receives driver information from
the system. It shall be possible to output different information to each type of driver
without the other types of driver seeing the outputs.

7.5.2 Application programming interface

This section describes that interfaces that the EDA applications will have with entities in the
outside world.

composite structure Interface diagrams /

ServiceCentre TrafficManagementSystem

IComm {Comm

8]

send(PRIORITY, DESTINATION, MESSAGE) : void
receive(MESSAGE) : void
getSpeedLimit(POSITION, int) : void
speedLimitAlert(int) : void

speedLimitWaming(int) : void
reportDetectionOfGDIncident(int) : void
warningForWrongWayDriving() : void

config() : void

CINT::EDA

) |Driver
Driver

(@)

45 L L L

IComm

&

RoadSideUnit

Figure 149: EDA external interface

The top level part of the EDA application interacts with the driver and legacy systems like
service centre, traffic management system and road-side unit. It is assumed that they will
already provide a channel for communication in the CVIS network. As it is common to define
a communication channel into a communication and application protocol, the specified
interface in EDA is mainly referring to the application protocol. This means that the encoding
and decoding of messages aimed for EDA will be handled by the provided feature.

The interface with the driver consists of a number of features which are mainly related to
speed limit awareness and detection of ghost driving.

04-06-2010 194 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

7.5.3 Information model

Some main information objects of the EDA application is depicted in Figure 150.

DrivingAdvice SleELLLL EDA Domain Objects::IV_E-Horizon
icEGllng (i currentRoadSegment: T_ROAD_SEGMENT
R g event: T_EVENT
logp il nextRoadSegment: T_ROAD_SEGMENT
- speed: int prevRoadSegment: T_ROAD_SEGMENT
Property - time: int
timeStamp: String
type: String
unit: Sring
value: String ROUTE_DESCR

TRAFFIC_STATE

links: LINK_LIST
maneuvers: MANEUVER_LIST
nodes: NODE LIST

Figure 150: EDA information model

04-06-2010 195 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

7.5.4 Interaction model
The following sequence diagrams show example interactions of the two sub applications of
the EDA (driving advice sub application and ghost driver detection).

The following sequence diagram shows how current speed limit information will be brought
to the vehicle so that it can be displayed.

sd EDA-SD Informing vehicle driver about current speed Iimit/

% In-vehicleSystem TrafficManagementSystem RoadsideUnit

VehicleDriver

periodicSpeedReport(curPosition, curSpeed)
>

speedReport(curSpeed)

L
h

_ periodicSpeedReport(curAvarageSpeed) !

o [}

O---0

T T
i calculateOptimizedSpeedLimitForRouteSection

[AN
If speed limit info is not
available via TMC or RSU, staticUpdateOfLocalMap(position)
the speed limit info provided|
to the driver isthe static one
contained in the in vehicle
navigation system database.

alt Speed limit by TMS /

getSpeedLimit(position, time) :SpeedPositionList

I
CurrentSpeedLimit(position) H

O3

DynamicUpdateOfLocalMap(SpeedPositionList)

1t

alt Speed limit by RSU

setCurrentSpeedLimit(speed)

>
U adjustSpeedLimit()

1
|
GetSpeedLimit(position, time) :SpeedPositionList

g
y

currentSpeedLimit(speed)

DynamicUpdateOfLocalMaps(SpeedPositionList)

checkForComingSpeedLimitChange(position)

informDriver

[y]
1
!

checkForOverspeed()

alt Overspeed
1
| o overSpeedAlam
= =]

Figure 151: Sequence diagram for informing the driver about the current speed limit

04-06-2010 196 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The next sequence diagram shows detection of a ghost driver by the vehicle and the vehicle
driver.

sd EDA-SD Detection and management of Ghost driving by the vehicle and Vehicle Driver /

% In-vehicleSystem RoadsideUnit TrafficManagementSystem

VehicleDriver
1

alt Preventing ghost driving /

incorrectEntranceDetection()

incorrectEntranceDetectionMsg()

T

)
1
1
|
1 :
; ; ;
1 1
: 1 1
] ' : :
: | ' '
1 1 1
: 1 1 1
] : <<l : :
; o rJ |
: i i |
: . : : :
! < warnDriver() ' ! !
0 4 : |
| - ' '
1 1 1
: | ' '
| ' i i
I H '
T]] !
[l 1] L}
T T T
alt Detecting ghost driving/ ! ' '
] : : :
1 1 1 !
: 1 1 1
i aletTMC ' ; i
| |
1 1
: :
ghostDriverReport(pos) |

|

g proceedInstruction(ghostDriverInstruction)

g* 5
Ll 1
boradcastGDWarningMsgToOtherVehicles() |
1
1
1
1
)
1
1

q
showlnstruction(designatedLanelnfo, speedlnfoj

Ny L
alt Alert phase / |
|
!
. furthurlnstruction(alertMsg)
-
e alertDriver()
<€

0

Figure 152: Sequence diagram for ghost driver detection by vehicle

The EDA service for detection of a ghost driver by the vehicle and vehicle driver involves the
in-vehicle system, road-side unit, traffic management system and vehicle driver entities. The
three stages which occur chronologically can be identified as follows:

Preventing stage,
Detecting stage,
Alerting stage.

Further descriptions of interactions with respect to the ghost driver sub application are
provided in D.CINT.3.2.

04-06-2010 197 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.5.5 High level composite architecture

The high-level composite architecture diagram for the EDA part of CINT is shown in Figure
153. It includes the interfaces of the EDA application with other CVIS services.

composite structure EDA High Level Composite Diagram /

EDA Application
Dynamic data O SpeedLimitManager Vehicle params &
(POMA) =4 Comm (FOAM)

~ o

Map and @ GhostDriverManager

positioning (POMA) /\/
\C_))\ 7\®\ HMI (FOAM) gl

TrafficinfomrationManager |—|

Traffic data (COMO)

Figure 153: High level composite diagram for the EDA application

04-06-2010 198 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.5.6 Deployment model

Figure 154 shows how the EDA application with its two sub applications will be deployed in
a CVIS physical environment.

deployment EDA Deployment View /

«execution environment» «execution environment»
Service Centre Traffic Management
SC_Gateway TMS_Gateway
«execution environment»
Vehicle
«execution environment»
a RSU

GhostDriverManager

GhostDriverManager

SpeedLimitManager

SpeedLimitManager

TrafficinformationManagerj

Figure 154: Deployment diagram for the EDA application

7.6 Information application

The information application and its main services are introduced in this sub-section. Further
details of the information application can be found in the D.CURB.3.2 "Architecture
Specification" document.

7.6.1 Overview

A driver can subscribe a service to receive information about traffic states, incidents
information and alternative route options.

A driver who subscribed is informed about the traffic and incident situation of a certain urban
network and receive individual information pre-trip an on-trip. He has the possibility to react
on congestions and incidents by choosing different routes, according their knowledge of the
urban network, or change his intended starting time.

By continuously monitoring, analyzing and predicting the road network state, high quality
traffic information is collected. Based on the content of the information, the driver's request,

04-06-2010 199 Version 1.0

«"CVIS

CVIS Architecture and

System Specifications

location and direction of his vehicle, information is selected on relevance, broadcasted to the

on-board computer and presented to the driver via a HMI.

The activity flow is as follows. A driver selects its destination in the HMI. A route to the
destination is calculated. The driver can select to receive on-trip information about traffic and
incidents situations. When the destination is selected in advance, the driver can also select to
receive pre-trip information. The information applications running on the vehicle CVIS host
system will send information requests to the urban centre and road-side units along the trip.
The received information from the urban centre and road-side units is filtered on relevance

and presented on the HMI.

Main use cases and system boundary

uc InformationAppIication/

Trav

Driver

P
<
\

Road Operator

«include» _
7

Information

Information Application

Routing
Communication

£
el Time !
[// |
/, 1

;
«include»
1

1
1
\
\
\
1

Traffic State and

/ \
. . 1
Incident Information,

! «include»
1

Warn Drivers of
Incidents

-

Traffic Information

T~

Middleware Facilitie

Figure 155: Use case model with system boundary

The use cases are as follows:

Area routing communication: The goal of this use case is to provide: i) the
communication of the route options to the driver and ii) the computation of route options
based at infrastructure side based on the current locally available traffic information. When

a congestion or a potential congestion is identified, the information is (back/fore)
propagated to other local units, e.g. on the upstream/downstream, or at central level. The
information can be communicated via local unit or by central system. The vehicle informs
the local unit of its position, its destination, its vehicle type (it is possible to generate routes
option specific for private, public transport, commercial and heavy vehicles) and its

04-06-2010

200

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

possible paths. The route options or related information are communicated to the vehicles
either by broadcasting, via local communication or any/unicast. By processing traffic data,
identifying congestion events and compute route options at local level the reaction and
processing time of the CVIS routing service are optimized. Furthermore local strategies
can be considered in the computation of local routing advices.

Local and area traffic information distribution and enrichment: The goal of this use
case is the distribution of network and local traffic situation and short and medium time
prediction at network, area and local level. The information is supposed to come from
higher level and to be eventually enriched with more detailed information, both from
vehicle (private/commercial/public) and from conventional infrastructure based sensors.
The information could be locally distributed without elaboration or enriched with local
status and prediction. A major task is to covey and resolve conflicting information that
may come from higher level systems (as traffic management and route guidance systems).

Generate and provide traffic state and incident information to individual vehicles:
The goal of this use case is to provide consistent high quality traffic information as on
onboard service to the road user. The road user can request information about incidents and
traffic state in certain urban networks or parts of urban networks. The information service
is not connected with a routing service is therefore addressing certain user groups. Only
informing the drivers on traffic conditions and incidents is a service which is especially
useful to road users who are well known with the network (commuters). By warning the
drivers of congestions and incidents shortly after the detection the road safety can be
improved. In addition the drivers have the possibility to use alternative routes according to
their knowledge of the network.

Warn drivers of incidents in the urban network: The goal of this use case is to inform
drivers about incidents in the urban network. The drivers are aware of the incident and are
able to adjust their driving behaviour. Safety is increased.

Travel time per destination information to driver: Actors involved are the driver of the
CVIS equipped vehicle, traffic management centres that provide the traffic information and
the road-side units in the CVIS network that distribute local traffic information.

Driver: The driver wants to travel through the urban network in a comfortable, safe and
efficient way. He is interested in being supported by dynamic information and navigation
systems.

Road Operator: The road operator is the organization responsible for maintaining the
roads and managing the traffic. The road operator wants to improve traffic control and
management by informing the drivers about the traffic and incident situations.

System Operator: The system operator is the organization responsible for maintaining the
road-side equipment. The system operator wants to improve their equipment by
implementing CVIS support.

04-06-2010 201 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.6.2 Application programming interface

For an application the main external interface is the interface provided to the end user. The
end user API for the priority application is shown in Figure 156.

s AF1 Infor mation Application /

winterfaces
AR lnformrafion Agalicafien - Driver

+ pmuide_prefeed_baffo_datz) o owoid
+ met peferences] o woid

Oriwer \

Infor mation Applicati

winterfaces
AP Informrafion Agplicafion - Operafor

+ et wwwan_beffo_data) ;owoid

Ro=d operator

Figure 156: API information application

The behavioural aspect of the interface is shown in Figure 157.

=d Behawviour model Infor mation Application /

E Infarmation E

iy Application iy

Crriver Road operatar

set_preferences

I
> :
I
. provide_prefered_traffic_data i
Bl i
I
- provide_prefered_traffic_data E
i i - set_urban_traffic_data i
: —
, provide_prefered_traffic_data
I_l"
E - provide_prefered_traffic_data
L_l"

Figure 157: Behaviour model information application

04-06-2010 202 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.6.3 Information model

This section provides the specification of the information model. The information model
identifies and defines the main concepts of the information application domain. The concepts
are specified in terms of their types using UML class diagram as shown in Figure 158.

class Domain Infor mation Model /

OriwverPreference Database

HMI_Crata_FRequirement: class
HMI_Freferences: class
Subscribe_Information: class

+ analyse_data_requirement : woid
zet preferences): woid
+ subscribe_for_specific_information : waid

Infor mationSubscriber

+

Local_Traffic_Cata: class
Prefered_Traffic_Data: class
Subscribed_Information: class
Urban_Traffic_Cata: class

+ confirm_subscription() ; waid
+ filter_local_traffic_data) : woid
+ provide_prefered_traffic_datal : waid
+ request_local_traffic_datal : weid
+ request_urban_traffic_datal: woid
Local Datahanager UrbanDatakanager
Local_Traffic_Data: class - Urban_Traffic_[ata: class
+ provide local traffic_datad : woid + prowide urban_traffic_datal : woid

Figure 158: Domain information model information application

7.6.4 Interaction model

In detail the sequence of events of the information application is as follows:
The driver starts its CVIS equipped vehicle.
The driver selects his destination and preferences on the HMI.
The HMI stores the selected preferences into a "Driver Preference" database.

The "Driver Preference" database will make a request to the information application for the
specific information.

The information application periodicals send requests for information to the urban centre
and the available road-side units along the trip based on the specific request. The received
information is filtered according the specific request.

Only the preferred information is shown on the HML

04-06-2010 203 Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

This main interaction is depicted in the process model of Figure 159.

uc Service owverview - information application /
" Driver .'f\
wflows "
Set infor ration
preferences
o
wflomne
Subscribe for specific
irfarmation Provide prefered traffic
data
ﬁiﬂow» aflowe afl o wilowes
Request lacal traffic data Request urban traffic data Frovide local traffic data Provide urban traffic dsta
aflows. _ . aflomatlons. ~aflows
RSU Urban center

Figure 159: Reference service process information application

A detailed scenario description is provided below:

A CVIS enabled urban centre registers its services, e.g. information application, and
properties, e.g. identifier and communication handle, to the "Distributed Directory Service"
(DDS). It can as well receive subscriptions from the vehicle applications.

A CVIS enabled road-side unit registers its services, e.g. information application, and
properties, e.g. identifier, location, reception range and communication handle, to the DDS.
It can as well receive subscriptions from the vehicle applications.

Road-side host activation: configuration files of the road-side services are sent to the
DDS. From there they are globally available within CVIS.

When a driver starts his CVIS enabled vehicle he has to authenticate himself to the CVIS
system.

Vehicle host start-up: the CVIS equipment is started.

"Authentication": The driver has to authenticate himself to the CVIS system by providing
some credentials, e.g. name, password, smartcard or biometric data.

Vehicle host activation: [I am alive message] is send to the "Host Management Centre"

04-06-2010 204 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

(HMC).
Configuration of CVIS vehicle host:

User profile activation: after authentication, the HMC will look up the stored end user
profile (if it exists). Such a user profile, e.g. myCVIS, consists of all mandatory public
services and optional free or paid services previously selected by the user.

Change user profile: after user profile activation, the user will be given the opportunity to
change his profile by adding or deleting (available) optional services from a list provided
form the DDS.

Note that it only involves the services which are available within a specified range of the
vehicle, most likely the fuel range.

Synchronization: the HMC subscribes the user to the selected services and verifies,
through the remote management protocol, whether the services belonging to the user
profile (or the right version of them) are actually present on the CVIS vehicle host. If not,
they will be provisioned by accessing the DDS including the properties (see 1) of the
partnering road-side units.

Note due to the so called "Selection Criteria" only the services which are available along
the route (in case the route is known) or within a range of X kilometres.

On the HMI the driver can set the preferences for receiving traffic information on-trip and
pre-trip. These preferences are stored in the "Driver Preference Database".

When the driver selects his destination on the HMI a route is calculated. Depending on the
preferences a subscription is made for specific information.

While driving, the CVIS vehicle host needs to check regularly if the present services are
still sufficient and/or valid. This can either be done:

- Time wise
- Location wise

The vehicle continuously monitors its location and the need to start communicating to a
CVIS road-side host, e.g. the information application.

The information application will periodical sends information requests to the urban centre
and the road-side units on the trip.

The provided data from the road-side units is filtered and only the preferred traffic data is
shown to the driver on the HMI.

04-06-2010 205 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.6.5 High level composite architecture

The high level composite architecture of the information application is shown in Figure 160.

cmp ComD - Information Application /

Vehicle REU UrbanCentre

5]

Co.1.1.Information Co.0.12 . Urban
Sub=criber Datatdanager

&l &l

Co.1.2.0riwer Co.1.4. Local
PreferenceDatabasze Datatdanager

Co03 Navigation |
SystemHvl)

Figure 160: Component diagram priority application

Co.1.1.Information subscriber: subscribes for specific traffic information based on the
preferences of the driver. The information comes from an urban or local level and will be
pushed to the in-car CVIS system based on the subscription.

Co.1.2.Driver preference database: contains algorithms to determine which information is
relevant for the driver in the current situation. This component informs the information
subscriber which types of information are useful and on the other hand presents the received
data in accordance with the drivers' preferences.

Co.0.3.Navigation system (HMI): The navigation system is the HMI to the driver. Based on
the input of the driver, the preferences of the driver are determined. Furthermore, the HMI
presents the received data.

Co.1.4.Local data manager: The local data manager gathers, fuses, stores and distributes
local traffic information.

Co0.0.18.Urban data manager: The urban data manager gathers, fuses, stores and distributes
urban traffic information.

04-06-2010 206 Version 1.0

CVIS Architecture and
System Specifications

«"CVIS

7.6.6 Deployment model

This section describes the logical deployment of the priority application onto the CVIS
infrastructure using UML deployment diagram as shown in Figure 161.

cmp Deployment Modsel /

cexecution environments
HiAl

N=wigation

Oriwver Preference
Databasze

wexecution environments

Vehicle
8]

Irfar rmation
Applicstion

“ehicle ather SP
components

wexecution environments

Urban Center

Urban Data
Manager

Center other SP
components

wexecution environments
Road Side Unit

Local Data Man=ager

RS ather SP
components

Figure 161: UML deployment diagram

7.7 Priority application

The priority application and its main services are introduced in this sub-section. Further
details of the priority application can be found in the D.CURB.3.2 "Architecture
Specification" document.

7.7.1 Overview

Some vehicles deserve higher attention than others, for instance emergency vehicles, public
transport vehicles, heavy trucks or trucks for DG. Public authorities and road operators should
be able to configure the local traffic management setting according to their policies and rules
with regard to these vehicles. In correspondence with the use case 'Request for green, the goal
of the priority application is to create a vehicle requested 'green window' in a cooperative
way. It aims at a more fluid (and safe) intersection crossing for the vehicle categories set by
the authorities. Feedback to the driver is optional. Possible, the priority application could be
extended by the speed profile application.

The activity flow is as follows. When a special category vehicle approaches a signalled
intersection, the vehicle identifies itself and informs a road-side unit of its expected time of
arrival at the stop line based on free flow conditions. The road-side unit gives the vehicle a
priority level and integrates all green requests into the signal program. Then, the road-side
unit implements the updated signal program into the traffic light controller and
simultaneously sends the green planning to the special category vehicle. Optionally, the
vehicle is able to calculate the desired speed to maximize efficiency.

Actors involved are the driver of the CVIS equipped vehicle in the predefined vehicle
categories, fleet owners of the equipped vehicles, road operators responsible for local traffic

04-06-2010 207 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

management and system operators owning the CVIS equipped traffic light controller and/or
road-side unit.

ol .

| ‘oo
T AR e L

Figure 162: Non-formal representation of the priority application

Main use cases and system boundary

The main use case of the priority application is 'Request for green'. In general an
acknowledgement message can be returned to the requesting vehicle or a number of vehicles
in a specific area However, within the field of cooperative urban applications it makes sense
to integrate the priority application and its use case with services provided by other CURB
applications. For instance a response to request for green may be to send a return message
containing information on the planned green times and the recommended vehicle speed in
order to meet the green window that is now been set up. The speed profile application
provides such kind of information to vehicles in the vicinity of a controlled intersection.
Therefore, integration with the speed profile application could be a logical extension of the
priority application. This is indicated in the use case model shown in Figure 163.

Furthermore, one of the main aims for cooperative vehicle-infrastructure systems is to
optimise traffic control systems through extensive and enriched traffic data. This aim is of
particular focus in the use case 'Cooperative Traffic Control' and its corresponding
application. Basically, the priority application is an example of functionality which enables
cooperative traffic control. Thus it could be convenient to integrate the priority application
also with the cooperative traffic control application.

04-06-2010 208 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The dependencies to middleware facilities are represented in the use case model using an
actor.

uc Priority Application/

O Priority Application

\

UC11 Request for
Green

Driver

O//

—————————— >

MiddlewareFacilities

Road Operator

UC13 Speed Profile UC25 Cooperative

Traffic Control

Figure 163: Use case model with system boundary

The use cases are as follows:

UC11 Request for green: Creation of a "requested green" in a cooperative way (targeted at
special road user categories). This use case describes the creation of a, vehicle requested,
green on a controlled intersection. This requested green is used to give priority to special
road categories like emergency vehicles, trucks with DG, public transport etc. For those
categories, it aims at a more fluid (and safe) intersection crossing. Priorities for the
different categories could and should be set by authorities. A feedback loop to the drivers
is optionally available.

UC13 Speed profile: This use-case describes an important feature to increase efficiency of
an intersection and the network. For maximum effect is application should be available on
all vehicles. The use-case has two main components. The first is to extend the controller
algorithms to deal with more and more detailed information received from CVIS vehicles
(FCD). The second main component is broadcast of speed profiles. The broadcast facility
is used to broadcast speed profiles to CVIS equipped vehicles driving in a certain direction
(please note that this is different from "destination"). The speed profile is a short time
profile with speed advice (suggesting acceleration / deceleration or just suggesting the
average approaching speed). The profile will be interpreted by the vehicles' on-board unit
and if necessary presented to the driver.

UC2S Cooperative traffic control: The goal of this use case is to optimize traffic flows in
a limited area (up to 5 intersections), based on all kind of available traffic information (esp.
XFCD and road-side sensor data) and using different methods of traffic control. Within the
control area, one co-operative intersection will be equipped with a Master device; the
others will be treated as sub-ordinate nodes.

04-06-2010 209 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The actors and their needs and responsibilities are described in the following:

The private driver wants to travel through the urban network in a comfortable, safe and
efficient way. He is interested in being supported by dynamic information and navigation
systems.

'""Road operator: Organisation responsible for maintaining the roads and managing the
traffic. The road operator wants to improve traffic control and traffic management by
defining and implementing cooperative control and management strategies.

Middleware facilities: Represents the CVIS basic and domain facilities (see part II of this
document)

7.7.2 Application programming interface

For an application the main external interface is the interface provided to the end user. The
end user API for the priority application is shown in Figure 164

uc APl Pricrity Application /

winterfaces
APt Prigrity Application

+ azk for green(] © void |

+ confim mezsage received() & void

+ Zend.gQreen It

+ zign ouff) : void Pricrity Application

User

Figure 164: API priority application

The behavioural aspect of the interface is shown in Figure 165.

sd Behavicural Model Prigrity Application /

32 Pricrity Appliction

Figure 165: Behavioural model priority application

04-06-2010 210 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.7.3 Information model

This section provides the specification of the information model. The information model
identifies and defines the main concepts of the priority application domain. The concepts are
specified in terms of their types using UML class diagram as shown in Figure 166.

class Demain Infarmaticn Model Priority Application /

Traffic_Information {at

intersection} Vehicle Pricrity_Manager

Link_Caoacity int e e
Link_Saturstion_Flow: int
Link_Travel_Timsas int

Link CQueus Length: int
Link_ Turning Rates: int
Link_Waiting_ Times: int
Link_Traffic Flows: int

Network_Map

- Road. Network Geography: int

- Intersections: int

- ‘Points_of Interest: int

-. Static Content_Layer: int

- ‘Dynamic Content_Siorage Layer int

Figure 166: Domain information model priority application

7.7.4 Interaction model

This section provides specifications of main domain processes. The overall value chain of the
priority application is shown in Figure 167.

uc Service owverview - pricrity application /

Send pricrity request Facilitate or decline
prigrity request
- Sz -
Special category R sl

wvehicle

Figure 167: Reference service process priority application

04-06-2010 211 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The workflow of the priority application is specified using UML activity diagram as shown in
Figure 168. The return message is specified as optional since a more extensive return message
can be provided when integrating with for instance the speed profile application.

act Activity Diagram UC11 - Prigrity Application /

Vehicle

R5U

. CV15 wehicle CVI5 R5U

Check green Broadcast
request presence
awvailabili

Data cellection
and fusicn

star

Check
authorisation
and prigritize

Ask for green '|

Implementat in
7 signal program

Update of signal
pregram

|' Broadcast

answer
[opticnally}

Shaw
suggestion to

driver

[CURE-TP2]

(=]

Figure 168: Activity diagram priority application

04-06-2010 212 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Comprehensive Scenario description

A more comprehensive scenario description including interaction with middleware facilities is
specified in the following.

After successful start-up, a CVIS enabled RSU registers its services, e.g. priority
application, and properties, e.g. identifier, location, reception range and communication
handle, to the "Distributed Directory Service" (DDS). It can as well subscribe to messages
originating from the vehicle part of the application. This allows for fast communication
setup when a vehicle enters the reception range of a particular RSU.

o "Road-Side Host Activation": configuration files of the road-side services are
sent to the DDS. From there they are globally available within CVIS. RS-
Service 2 RS-FOAM (R-DDS) - RS-COMM - C-COMM - C-FOAM (C-
DDS)

The user starts the vehicle

o "Vehicle Sub-system Start-up": the CVIS mobile host, router and gateway are
started.

o name, password, smartcard or biometric data.

o "Vehicle Host Activation": [I am alive message] is send to the HMC; V-
FOAM - V-COMM - C-COMM - C-FOAM

The driver can insert a destination (in that case a route is calculated)
o To be done with PTV and MIZAR

Configuration of CVIS vehicle host User > HMI = V-FOAM - V-COMM - C-COMM
- C-FOAM

o "User Profile Activation": after authentication, the HMC will look up the
stored end user profile (if it exists). Such a user profile, e.g. myCVIS, consists
of all mandatory public services and optional free or paid services previously
selected by the user.

o "Change User Profile": after user profile activation, the user will be given the
opportunity to change his profile by adding or deleting (available) optional
services from a list provided from the DDS. Note that it only involves the
services which are available within a specified range of the vehicle, most likely
the fuel range.

o "Synchronization": the HMC subscribes the user to the selected services and
verifies, through the remote management protocol, whether the services
belonging to the user profile (or the right version of them) are actually present
on the CVIS vehicle host. If not, they will be provisioned by accessing the
DDS including the properties (see 1) of the partnering road-side units.

Note due to the so called "Selection Criteria" only the services which are
available along the route (in case the route is known) or within a range of X
kilometers.

The vehicle continuously monitors its location and the need to start communicating to a
CVIS road-side host, e.g. the priority application.

04-06-2010 213 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

If communication between the vehicle and road-side is set up, the vehicle sends the
'Minimum Data Set' to the road-side unit. Making itself known to the road-side unit
represents the action 'Request for Green'.

o The minimum data set consists of: ID (to determine vehicle type), travel time

to stopping line from current position (to determine time of arrival at stopping
line), movement at the intersection (to determine the corresponding signal
group) and status (heavy, dangerous, emergency, much too late, much too
early, etc.).

The road-side unit collects all green requests, either cooperative or traditional via loop
detectors, and answers the cooperative ones with a 'message received'. As far as possible
all green requests are labelled with a certain priority level/weight, which are set by an

authority.

The road-side unit calculates the optimal planning for the traffic light controller.

o The cost function of each link consists of variable and weights. One of the

weights, most likely the weight for delays, represents the sum of the priority
weights of all vehicles on a link. Additionally, congestion detectors are
included in order to overrule the priority application during peak hours when
the application is likely to perform poorly.

Note: initially, all vehicles get 'conditional priority', which means priority
when possible. Some vehicles, like emergency vehicles may require 'absolute
priority' and therefore could be treated differently.

The weight of the links only define which signal group will be realized first.
When green should start and how long it should start depends on the queue, the
capacity flow and the travel time to the stopping line of the priority requesting
vehicle. Furthermore, a number of conditions apply:

= All directions should have green at least once per cycle.

* Conflicting signal groups may be cut off with preservation of minimum
times.

Note: it has to be considered if minimum green can be set dynamically.

Facilitating priority request for conflicting directions requires a flexible traffic
light control. With a traditional stage oriented control requires a certain cycle
has to be gone through, which may result in a considerable delay before a
specific signal group can be realized. To solve this problem a signal group
oriented control is required, in which the control cycle is flexible and each
signal group can be realized when needed.

The road-side unit sends the planning to the traffic light controller for implementation.
Optionally, a return message may be send to the priority requesting vehicles. However, a
number of remarks need to be made:

o The user acceptance of a system is very important. If a decision is made and

the user in the vehicle is information about the current or future green window,
it should not be able to change this anymore. Alternatively, a condition could
be not to change a decision anymore once an informed vehicle has entered the
dilemma zone and a hazardous situation may occur when the user abruptly

04-06-2010

214 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

decides to brake thoroughly.

Since the traffic situation at an intersection is very complex and highly
dynamic it is very likely that there is a need to change the signal light planning
on a very last notice. Therefore, it should be considered not to inform the user
at all.

An alternative for the above may be to allow changes in previous decisions and
inform drivers about the reason for this change. This approach should only be
applied in exceptional situations, like a last minute priority to an emergency
vehicle which otherwise would have violated the red light. This example has a
very strong relation with the SAFESPOT intersection application which
objective is to warn road users at an intersection for red light violators.

e Once the vehicle has passed the intersection it will sign out. A signing out message
enables to calculate driving times in the vicinity of the intersection easily.

7.7.5 High level composite architecture

This section provides specification of the high level composite architecture. The high level
composite architecture describes the overall architecture of the system and the partitioning
into sub-systems and components. It also identifies the interfaces and the relationships
between the sub-systems, components and interfaces.

The high level composite architecture of the priority application is shown in Figure 169.

cmp Component Diagram Pricrity Application /

RSU Priority Application |

= % Co.2.1. Traffic
€0.2.3. Traffic __JCC}_ Co.0.2 Co.0.5. Signal Light Controller
Data Manager Intersection Program Manager \CEM)
{COMO} MMonitor
| Vehicle Pricrity Application |
Co.2.2. Map- _(: Co.0.3. Decision Co.0.6. Qutput
Matching Medule IManager Actuator ’CO :
{POMA} (_:D_‘L‘i. .H“l
Co.24. weh.uurkg:l _zCC Co.0.2. Co.0.1. Green
Manager [COMO} Authorisation Demand Manager O} Co.1.2. Service
Manager Manager

7

5
\r

Co.2.5. Co.2 6. Vehicle
Subscription Detector [COMO}
WManager (FOARM}

Figure 169: Component diagram priority application

04-06-2010

215

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The following main components are identified:

Green demand manager: responsible for collecting all green requests via both the traditional
loop detectors and cooperative green requests from special category vehicles.

Authorisation manager: responsible for verifying the validity of the green requests and
ranking of the request based on the priority levels

Decision manager: responsible for the handling of green requests and update of the signal
program. Also initiator of return messages to the vehicle.

Intersection monitor: concerns an on-line monitoring function for the intersection. This
involves: travel times, queue lengths, turning percentages, waiting times and traffic flows.

Signal program manager: responsible for extracting and implementing the signal program
from/into the traffic light controller.

Output actuator: responsible the generation and distribution of return message to the
vehicle.

HMI"': responsible for presenting and receiving information to/from the driver of the vehicle.
Service manager: responsible for activating a service/application once it is available.

Traffic light controller: responsible for the implementing and monitoring of the signal
program.

Map-matching module: responsible for mapping the information in order to facilitate the
decision process (POMA).

Traffic data manager: responsible for the provision of specific traffic data like waiting
times, queues, etc. at the intersection (COMO).

Network manager: responsible for the provision of traffic management strategies, in case
priority levels in particular (COMO).

Subscription manager: responsible for the maintenance of the user profile where can be
found what services each user/vehicle is subscribed to (FOAM).

Vehicle detector: responsible for vehicle detection and providing data to determine the traffic
state at the intersection (COMO).

More details of these components can be found in the respective D.SP.3.2 specification
documents.

04-06-2010 216 Version 1.0

CVIS Architecture and
System Specifications

«"CVIS

7.7.6 Deployment model

This section describes the logical deployment of the priority application onto the CVIS
infrastructure using UML deployment diagram as shown in Figure 170.

deployment Deployment Model Pricrity Application /

aexecution environments wexecution envircnmentz
Reoad Side Vehicle
R5U Pricrity RSU Other 5P ‘I.Fehu:le Pm:l!b!;' RS5U Other 5P
Appliction parts Application parts

N /

wexecution envircnments

Centre

Centre Other 5P
parts

Figure 170: UML deployment diagram

7.8 Speed profile

The speed profile application and its main services are introduced in this sub-section. Further
details of the speed profile application can be found in the D.CURB.3.2 "Architecture
Specification" document.

7.8.1 Overview

The speed profile application aims at providing speed advice to the driver in order to increase
comfort and increase traffic safety. The application utilizes basic communication facilities and
the location reference domain facility.

In the CVIS context, vehicles are equipped with an intelligent device that is able to
communicate with the infrastructure and among vehicles. This intelligent system can thus
help the driver to choose the best speed to approach signalised intersections.

The speed advice functionality would demonstrate that it is possible to communicate to the
vehicles the best speed to approach the signalised intersection to have the green light. The
speed profile is different for each direction and for different distance from the intersection.

The speed profile calculates the best approaching speed considering the remaining green time
(or the time to green) and the strategy decides by the next signalised intersection. Then it

04-06-2010 217 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

communicates to vehicles the best approaching speed profile, to maximize the intersection
throughput (and also minimize travel time for the vehicles). It also calculates the remaining
time of red time to alert the driver of the light changing, in case of red light.

The aim of the application is not only the optimisation of the drivers' comfort, but also the
optimisation of the throughput of the intersection.

The speed advice functionality is studied for a series of intersection that have a "preferential”
axe. In this way it is possible to communicate the vehicle not only the best speed for the next
one intersection, but also for the next two (if the distance between the two intersections is not
too high). It is not possible to calculate the speed to approach the third intersection, because
the adaptive control changes control strategy each 3 seconds.

The system can be used in intersections which the distance from one between another is not
more than 50 meters, but it is not very useful because the distance between the intersection
correspond at about three seconds, and the traffic light phase can not be modified.

Main services and system boundary

This section provides an overview of the main services of the system and the system
boundary. It also includes the mapping to FRAME artefacts (the traceability matrix) and
description of non functional requirements (QoS).

uc Speed Profile Application/

-

Driver

%/

Road Operator

Speed Profile Application

UC13 SpeedProfile

/ MiddlewareFacilities

Figure 171: Use case model with system boundary

The use cases are as follows:

UC13: Speed profile: This use-case describes an important feature to increase efficiency
of an intersection and the network. This is should be available on all CVIS enabled
vehicles for maximum effect. The use-case has two main components. The first is to
extend the controller algorithms to deal with more and more detailed information received
from CVIS vehicles (FCD). The second main component is broadcast of speed profiles.
CVIS technology is used to broadcast speed profiles to CVIS equipped vehicles driving in
a certain direction at the intersection. The speed profile is a short time profile with speed
advice (suggesting acceleration / deceleration or just suggesting the average approaching
speed). The profile will be interpreted by the vehicles' on-board unit and if necessary
presented to the driver. We also expect a positive effect on environmental issues due to the
reduced amount of stops and go's.

04-06-2010 218 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The actors and their needs and responsibilities are described in the following:

Driver: The private driver wants to travel through the urban network in a comfortable, safe
and efficient way. He is interested in being supported by dynamic information and
navigation systems.

Road operator: Organisation responsible for maintaining the roads and managing the
traffic on it. The road operator wants improve traffic control and traffic management by
defining and implementing cooperative control and management strategies.

Middleware facilities: Represents the CVIS basic and domain facilities (see part II of this
document)

For an application the main external interface is the interface provided to the end user. (Note
that we are not concerned about the GUI at this point, but the description of the services
provided to the end user). The application programming interface for the speed profile
application is shown in Figure 172.

cmp API Speed Profile Application/

«interface»
O API Speed Profile Application

+ setdestination: int
“““““““ + activate speed profile application : int

Speed Profile Applicatic
User

Figure 172: API speed profile

The behavioural aspect of the interface is shown in Figure 173.

sd Behavioural Model Priority Application/

Q Speed Profile
X Application
User

! T

i :

i Set destination i

Activate Speed profile application

speed advice

ore :

Figure 173: Behavioural model speed profile

04-06-2010 219 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

7.8.2 Information model

This section provides the specification of the information model. The information model
identifies and defines the main concepts of the application domain. The concepts are specified

in terms of their types using UML class diagram as shown in Figure 174.

class Domain information model speed profile/

RSU

Intersection

id: int

Road

LR: int

intersectionid: int

LocalMovement

LRin: int
LRout: int
MovementType: int

Vehicle

Vehicle_position: int
Vehicle_id: int
Vehicle_type: int
Vehicle_Timestamp: int
Vehicle_status: int
Vehicle_finaldestination: int
vehicle_speed: int

/

UrbanCorridor

SpeedProfile

LR: int
LRDirecti

on: int

LRDistance: int
MovementType: int
SpeedValueMax: int
SpeedValueMin: int
Timestamp: int
TimeValidity: int

SpeedValueNominal: int

SignalState

TEndMax: int
TStartMax: int
TEndMin: int
TStartMin: int
TStartExpected: int
TEndExpected: int

N

SpeedAdvice

SpeedValue: int

Figure 174: Domain information model speed profile

04-06-2010

220

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.8.3 Interaction model

This section provides specifications of main domain processes. The overall value chain of the
priority application is shown in Figure 175.

act Process speed proﬂe/

-------------2>Compute speed profile ~ }----- == Compute speed advice -

Driver

TLC

Figure 175: Reference service process speed profile

The workflow of the priority application is specified using UML activity diagram as shown in
Figure 168.

act Activity diagram Speed profile/

Vehicle RSU

Start

Set destination
using GUI

Activate speed
profile

recieve speed process traffic

Check speed profile
application avialabilty
profile request signal state
Provide speed profile

HMI send
c d
[P speed
speed advice profile

Figure 176: Activity diagram speed profile

request speed
profile

04-06-2010 221 Version 1.0

P

cv S CVIS Architecture and
System Specifications

Scenario description

1.

7.8.4

The vehicle knows type of vehicle, actual speed, location and direction of the CVIS
vehicles. In this way the situation on the road is known in the most detailed way.

Controller calculates new speed profiles for every direction (time horizon of the
profile might differ for different directions).

Controller broadcasts those profiles to all equipped downstream vehicles in one
direction.

CVIS equipped vehicles receive the message and compute the speed advice suitable
for the vehicle state.

. The driver is notified in a suitable way, e.g. blue arrow up to speed up and red arrow

down to slow down a bit for a more fluid ride, arrows might be dynamic in size.

High level composite architecture

This section provides specifications of the high level composite architecture. The high level
composite architecture describes the overall architecture of the system and the partitioning
into sub-systems and components. It also identifies the interfaces and the relationships
between the sub-systems, components and interfaces.

UML composite structure diagrams, UML class diagram and/or UML component diagram
can be used for the modelling. It is recommended to use the UML composite diagram, which
support the necessary mechanisms to model several levels of abstraction (composites) in one
diagram in an intuitive way. UML composite structure diagram was introduced with the UML
version 2.

04-06-2010 222 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

cmp ComD Speed Profile application /

Vehicle Speed profile application |

RSU speed profile application | }*/

Co.1.3.5 - Vehicle
Configuration DB

Co.1.3.4 - \
RSULocati Modul \
Co.1.3.6 - Vehicle

HLCD::Co.0.1.2- [| Position
OnBoardSpeedManager|

L0 \

HLCD::C0.0.2.3 -
Co.1.3.3 - RSUSpeedProfileManager|
RSULocalNetw orkMap

Co.1.3.2 -

Co.1.3.1 -
OnBoardNetw orkMap|

5

Figure 177: Component diagram priority application

The following main components are identified:

OnBoardNetworkMap'': The on-board network map is used to filter the messages coming
from the RSU and to map-match the current vehicle position.

LocationReferenceModule': The location reference module on the vehicle is used to
convert the information coming from the infrastructure. The information is used to filter the
relevant information for the vehicle, matching the current position and the received one on the
local map (POMA)

Vehicle position: The component provides current and possible next vehicle position.

Vehicle configuration DB: The component manages the access to the configuration DB of
the vehicle, this DB contains information on the vehicle type, mass, acceleration and
deceleration ranges, status, category, e.g. commercial vehicle, public transport, emergency.

RSULocalNetworkMap'': The onboard local map has the information used to represent
using a location reference technology the speed profile information to be communicated to the
vehicles.Local map has also the matrix of movements.

RSULocationReferenceModule': The RSU location reference Module is responsible to
translate back/forth the location information to the local map.

Subscription manager: responsible for the maintenance of the user profile where can be
found what services each user/vehicle is subscribed to FOAM.

Position module: Provides the position of the vehicle

04-06-2010 223 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Map-matching module: responsible for mapping the position information in order to
facilitate the decision process.

7.8.5 Deployment model

This section describes the logical deployment onto the CVIS infrastructure, i.e. the
deployment of the above specified components to physical nodes such as vehicles, road-side
unites, management centres etc. UML deployment diagrams are used for the modelling.

deployment model Speed Profile/

«execution environment»
Road Side

«execution environment»
Vehicle side

RSU Speed profile
application RSU Other SP parts Vehicle Speed
profile application

«execution environment»
Centre

Centre Other SP
parts

Figure 178: UML deployment diagram

7.9 Cooperative traffic control

The cooperative traffic control application and its main services are introduced in this sub-
section. Further details of the cooperative traffic control application can be found in the
D.CURB.3.2 "Architecture Specification" document.

7.9.1 Overview

The cooperative local traffic control optimizes traffic flows in a limited control area, based on
all kind of traffic data available. "Floating Car Data" (FCD) are collected and merged with
data from traditional detection. This leads to an improved traffic information and is the basis
for calculating the local traffic status for selected urban areas. In accordance with the traffic
strategies defined by the local authorities, a master unit co-ordinates traffic flows of the
subordinate intersections. This leads to an improvement of the overall network efficiency.

The activity flow roughly works in the following way:

04-06-2010 224 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

CVIS vehicles in a defined control area send out FCD to the closest road-side unit. The road-
side unit collects the FCD and merges them with available detector information. On the basis
of both sources of information, the road-side unit sends local traffic states to the area master
unit which coordinates a defined number of intersections. With all information available, the
area master unit analyzes the traffic situation in the control area and sends out control
measures to the RSUs as indicated in Figure 179.

Transmit Transmit
— FcD P RSU 7Trafficinf04> Area Master
t Send
Control
parametres

Figure 179: Cooperative traffic control overview

Main use cases and system boundary

uc Cooperativ eTrafficControl /

Cooperative Traffic Control

Cooperative Traffic
Control

Road Operator Driver

Figure 180: Use case model with system boundary

The use cases are as follows:

Cooperative traffic control: The goal of this use case is to optimize traffic flows in a
limited area (up to 5 intersections), based on all kind of available traffic information (esp.
XFCD and road-side sensor data) and using different methods of traffic control. Within the
control area, one co-operative intersection will be equipped with a Master device; the
others will be treated as sub-ordinate nodes.

The actors and their needs and responsibilities are described in the following:

The private driver wants to travel through the urban network in a comfortable, safe and
efficient way. He is interested in being supported by dynamic information and navigation
systems.

Road operator: Organisation responsible for maintaining the roads and managing the
traffic on it. The road operator wants improve traffic control and traffic management by
defining and implementing cooperative control and management strategies.

04-06-2010 225 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

7.9.2 Application programming interface

The cooperative traffic control API is specified in Figure 181.

class Cooperativ eTrafficControl /

«interface»

Cooperative Traffic Control

+ providelLocalTrafficState(TrafficState) : void

Figure 181: Cooperative traffic control API

The cooperative local traffic control does not require an interface with the end user,
understanding that the driver is considered the end user. It is assumed that the FCD (time-
stamped location of the vehicle) is automatically transferred to the next RSU without any
active input from the driver.

This is elaborated in the sequence diagram below.

sd Road Side Unit /

Traffic States

3.1 Data Fusion &
Computation of Local

0.1 Area Data
Manager

0.2 Area Traffic State
Calculator

0.3 Area Master

1.2 LUTC

| g

Me_1_31:

ocal Traffic State Request

Me_1_12: Signal Program:Status Request

e

Me_31_1: Local Traffic State
1

Me_2_1: Local Traffic and Control State Request

Me_1_2: Local Traffic and Control State

Me_3_2: Area Traffic State Request

Me_12_

.’r]
Me_2_3: Area Traffic State

: Signal Program Status

Me_3_12: New Traffic Control Parameters

.
Me_12_3 Csmfirmation of control paramletres

Figure 182: Sequence diagram cooperative traffic control application

04-06-2010

226

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.9.3 Information model

The information model related to the cooperative traffic control application is shown in Figure
183.

class Domain Objects
Vehicle RSU
+ Vehicle time stamp() : int + RSUID() :int
+ Vehicle location() : int + RSU services() : void
+ Vehicle ID() : int
Local Traffic information Intersection
+ Lane capacity() : int Link() : ir.n
Lane() : int

+ Lane traffic flow() : int
+ Lane average waiting time() : int

+ + + +

Signal Group() : int
Local traffic state() : int

Area Manager Traffic controller

+ Area traffic states() : int

X + Signal program status() : int
+ Area control rules() : int

Figure 183: Domain information model cooperative traffic control application

7.9.4 Interaction model

The sequence in the cooperative traffic control is as follows:

XFCD is transmitted from all CVIS vehicles in the area to the closest road-side units
(RSU) in real time.

The RSUs of the co-operative intersections receive the XFCD, perform a data fusion with
the available detector data and compute the local traffic state for each intersection area.

The local traffic states are transmitted to the co-operative master intersection controller and
are aggregated, resulting in a complete traffic state for the whole area.

On the basis of the area traffic status the co-operative master controller determines the
optimal control measures for the whole area.

(Optionally, the information on the area situation is transmitted to the central system at
network level.)

(Optionally, the central system checks the area control measures with regard to compliance
with overall network priorities. Only in case of conflict, the central system sends a
correction message back to the master controller.)

The traffic control strategies are transmitted to the subordinated co-operative intersection
controllers.

04-06-2010 227 Version 1.0

“‘ cv S CVIS Architecture and

System Specifications

The subordinated controllers implement the traffic control measures accordingly.

The overall workflow is indicated in Figure 184. The green processes are external processes
(external to the cooperative traffic control application.

vehicle Signal processor Traffic Control

Master
Positioning
of vehicle

A 4

S1: Proyide|vehicle,
utomatic FCq information
Transmission > Collection of
to RSU FCD

COMO: S2: Local ftraflic status| Dat
Fusion of FCd ata
detection datgj aggregation

R

Area traffic
state analysis

A

I

Selection of
Signal plans
v
Implementatior}, S3: Switching order Transmission
of signal plan of signal
plans

Figure 184: Overall workflow of the cooperative traffic control application

04-06-2010 228 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.9.5 High level composite architecture

The high level composite architecture of the cooperative traffic control application is
specified in Figure 185. The green components are external components (external to the
cooperative traffic control application).

cmp Components

Vehicle RSU

0.3 Area Master

0.2 Area Traffic State
Calculator

5]

0.1 Area Data Manager

2.1 FCD sender 3.1 Data Fusion &
Computation of Local
Traffic States

/

1.1 RSU Local Netw ork 1.2 LUTC
Map

Figure 185: High level composite architecture, cooperative traffic control

The components are elaborated further below

Area master receives the area traffic state from the area traffic state calculator. It also
receives the current signal programme status from the LUTCs in the control area. Based on
this information, it algorithmically determines control parameters for the traffic light
control of the area, aiming at optimizing the relevant traffic flows in the area. Finally the
area master sends the traffic light control parameters down to the LUTCs.

Area traffic state calculator receives local traffic and control states from the area data
manager. It checks the plausibility of the data, performs certain aggregation, and possibly
selects relevant data subsets for further consideration. Eventually, it combines the local
traffic states to one area traffic state.

04-06-2010 229 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The area data manager is responsible for bringing together all relevant data needed for
the area traffic state determination. This data is sent to the area traffic state calculator of
the master RSU. In case of a slave RSU this means that the data has to be sent from one
RSU to another (neighboured) one.

Data fusion & computation of local traffic states: The data fusion manager receives
FCD from the vehicle, formats them and pre-processes them. In parallel, it receives
detection data from the LUTC. Pre-processed FCD and detection data are merged and used
for the calculation of the local traffic state.

FCD sender is located in the vehicle and transmits FCD to the next RSU.

The local urban traffic control (LUTC) has the control methods for the conventional
traffic control.

The RSU local network map contains information on the positioning of the CVIS
vehicles in the intersection area.

7.9.6 Deployment model
The deployment of the cooperative traffic control application is according to Figure 185.

7.10 Flexible bus lane

The "Flexible Bus Lane" application and its main services are introduced in this sub-section.
Further details of the flexible bus lane application can be found in the D.CURB.3.2
"Architecture Specification" document.

7.10.1 Overview

The flexible bus lane application allows a driver within its private vehicle to access a reserved
bus lane (BL) using available traffic data, route guidance, PT ETA and sends licenses to
equipped vehicles. All equipped vehicle may contribute to the infrastructure, furnishing traffic
data, queue at traffic lights, and estimation of vehicle flow, incidents/accidents, and many
other useful information for the traffic management system.

A typical scenario of use is contextualized in the urban environment. A driver of a private,
CVIS-equipped vehicle should use a route guidance system to reach his destination. During
the computation of the routing, "Bus Lanes" (BLs) may be considered as alternatives. In this
case, when a vehicle is approaching a BL that may shorten his routing, a prompt may ask the
driver to use the BL (as alternatives, driver may know if the BL shorten his journey). This
question must be raised only if the AVM system in collaboration with the RSU estimates no
queue at the next stop/crossing/traffic lights for "Public Transport" (PT) vehicles. If the driver
accepts, a license for accessing the BL will be given to on board CVIS-equipment. When a
private vehicle approaches a BL, it can go through it, but it can be asked to leave the BL in
case of approaching PT vehicles or in case the ETA of following PT vehicles is not kept. At
every crossing/traffic light the driver/private vehicle must request a license renewal. If ETA,
traffic congestion, flow, accident/incident and other information gathered by RSU allow
license renewal, the driver may continue to use the BL, otherwise the BL must be left. To
enforce the received instructions, some enforcement may be installed, e.g. video enforcement.

04-06-2010 230 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

The flexible bus lane application is depicted in Figure 186.

Figure 186: Non-formal representation of the flexible bus lane application

04-06-2010 231 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Main use cases and system boundary

The main use cases and the system boundary are specified in Figure 187. The flexible bus
lane application use cases can be associated with routing use cases to provide more advanced
urban traffic management. This is also indicated in Figure 187.

uc FIexibIeBusLane/

Flexible BusLane
—_— | Netw ork Routing
Bus lane allocation\— |
Driver to other road user
\\
Area Routing
_ Creating space to PT
vehicles
PT Manager

Figure 187: Use case model with system boundary

The use cases are as follows:

Bus lane allocation to other road user: The goal of this use case is to increase the
capacity on dedicated road sections by providing BL access to CVIS equipped road users
when the BL is not used by public transport or other specific vehicles.

Creating space to PT vehicles: The goal of this use case is to clear the BL in order to
avoid disturbances for public transport and to guarantee a punctual and fast transit for the
public transport vehicles.

Request for green: Creation of a "requested green" in a cooperative way (targeted at
special road user categories). This use case describes the creation of a, vehicle requested,
green on a controlled intersection. This requested green is used to give priority to special
road categories like emergency vehicles, trucks with DG, public transport etc. For those
categories, it aims at a more fluid (and safe) intersection crossing. Priorities for the
different categories could and should be set by authorities. A feedback loop to the drivers
is optionally available.

Area routing: The goal of this use case is to provide route guidance advice generation at
local and distributed level. The area of influence can span from a single RSU, to a cluster
of RSUs. The cluster can depend on the network and the actual position of the constraint.
The information can then be propagated at higher level, to generate network level route
guidance. The system will consider an incident or momentary disturbance in traffic flow.
By conducting the determination of incidents and the calculation of alternative routes
within the local road-side infrastructure a highly responsive local area rerouting is realised.
The private vehicle drivers benefit from a reduction in travel time and an increase of
safety, while preserving network efficiency.

Network routing: The goal of this use case is to support the implementation of network
wide traffic scenarios by giving routing advice to individual vehicles while knowing their

04-06-2010 232 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

characteristics and destination and also the network wide traffic conditions. By using
individual information the road operator is able to offer, via a service provider, several
individual route options that cannot be offered in a collective way, e.g. by road-side
displays. The road operator can achieve better distribution of traffic by routing vehicles via
links with capacity resources.

The actors and their needs and responsibilities are described in the following:

The private driver wants to travel through the urban network in a comfortable, safe and
efficient way. He is interested in being supported by dynamic information and navigation
systems.

Road operator: Organisation responsible for maintaining the roads and managing the
traffic on it. The road operator wants improve traffic control and traffic management by
defining and implementing cooperative control and management strategies.

Public transport operator: The public transport operator is a private or public
commercial entity providing and managing public transport in the urban network. The
public transport operator wants his vehicles to travel in a fast, safe and efficient way.

The API of the flexible bus lane application is specified in Figure 188.

ud Use Case Model /

winterfaces
AP1 Bus Lanes Application

+ azk for BL usage() . void
+ leswve BL() : void

UsEer BL Application

Figure 188: API flexible bus lane application

The methods defined through the interface described are:
ask for BL usage, from the user to the application;

leave BL, from the application to the user

04-06-2010 233 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

An example scenario applying these methods is specified in Figure 189.

sd Interactions
% BL Application
Driver

! T

i |

1 ask for BL usage > i

reply license/den

<-------- B 0

1

1

1

acknowledge ».L

leave BL

T o

1

acknowledge i

| |

Figure 189: Behavioural model flexible bus lane application

04-06-2010 234 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.10.2 Information model

The domain information model of the flexible bus lane application is specified in Figure 190.

class Domain Informaticon medel BL Application /

Demain Informaticn Model: Comain Infermation Model:
Traffic_Infermation (at Nehicle
intersection}

A e o
=
5

- Link _Capacity: int

- Link_Ssturstion Flow: int
- Link_Trawel_Timss: int

- Link_GQueus_length: int
- Link_Turning_Rates; int
- Link_Waiting_Times: int
- Link_Traffic Flows: int

TR TS
fii

Ciomain Informaticn
Maodel: PT_Manager

BL_stratsgiss: int

4 : ; : Cremain Infermaticn
Domain Information Domain Informaticn Model: Bus
Model::R5U Model::Intersection
RSU_ID: int - Link int AR
RS Services: int - Lanesint EJLL:E“C_.. int
Service_Output: int - Signal_Group: int Beos
T e e S e e e S A Bus_Timestamp: int
Domain Infermation Model: Comain Information
Hetwork_Map Domain Infermation Model::TLC Model: Bus Lane

Road_ Metwork Gecgraghy. int
Intersections; int

Points_of Intesest: int Mo
Static Content_Layer: int - Cleering_C
Oynamic Content_Storsge Layer int - Turning_Percentages: int

Figure 190: Domain information model flexible bus lane application

7.10.3 Interaction model

The flexible bus lane application comprises two main use case scenarios: 'Bus lane allocation
to other road user' which provides licenses to use the BL and 'Creating space to PT vehicles'
(preventing disturbances to public transport vehicles). In detail the sequence of events of the
flexible bus lane application for these two use cases is as follows.

Bus lane allocation to other road user
Public transport vehicles send ID and position to the PT management centre.

2. PT management centre sends to the RSU data related to the buses arriving to the BL
section in the next 15 minutes (ID, destination, ETA, etc.).

3. CVIS equipped vehicle approaches and reports its destination, vehicle characteristics
and speed to the CVIS road-side controller.

04-06-2010 235 Version 1.0

P

cv S CVIS Architecture and
System Specifications

In case of congestion or expected congestion on the following road section a license to
use the BL is requested from the vehicle to the RSU of the current section. If the
licensed CVIS vehicle is already using the BL and/or the time of expiration of the
license is over, it has to request the renewal of its license to the following RSU when
changing section or current RSU when still into the section.

CVIS road-side controller decides on basis of CVIS vehicle characteristics and speed,
intended destination, global traffic flow, next bus ETA, bus stops and dwelling times
along the BL, BL occupancy, queue at crossing / traffic lights and headways needed
for public transport, if CVIS vehicle approaching is allowed to use the BL. The aim is
to optimise general traffic situation without jeopardising the level of service of PT e.g.
without increasing PT vehicles waiting time at traffic lights.

If the approaching CVIS vehicle does not create disturbances, RSU releases a new
license to the CVIS vehicle in order to use the BL. The license is communicated to the
driver via HMI and is valid for the estimated duration of completion of the section by
the CVIS vehicle.

RSU gets back an acknowledgement message from the driver.

If the CVIS road-side controller decides not to release a licence, RSU stops to release
new licenses to CVIS vehicles until the conditions for granting a license are fulfilled
again.

RSU restarts to release new licenses after the bus has entered in the BL (therefore
coming back to point 6).

Creating space to PT vehicles

1.
2.

Public transport (PT) vehicles send ID and position to the PT management centre.

PT management centre sends to the RSU data related to the next bus approaching to
the BL (esp. ETA at the traffic lights).

CVIS road-side controller analyses the traffic situation on its BL section and
determines the waiting time at the next traffic light for public transport vehicles.

CVIS road-side controller identifies the private vehicles running in the BL which
distance to the approaching bus is smaller than the minimum headway needed to avoid
queue at the traffic light.

. If the headway is inadequate and/or a green wave not feasible, no further licences are

granted until the bus has completed the BL section and the conditions for granting a
license are fulfilled again.

CVIS road-side controller identifies the private vehicles running in the BL which
license is no longer valid, e.g. time of expiration is over.

In both cases (points 4 and 6), RSU orders CVIS vehicles to leave the BL at end of its
section or next crossing / traffic light (depending on the layout).

04-06-2010 236 Version 1.0

P

cv S CVIS Architecture and
System Specifications

8.

If the situation is "strongly critical”, e.g. minimum headway not possible, green wave
not feasible, heavy congestion on regular lanes and at next crossing / traffic light,
serious incident / accident forbidding vehicles to be absorbed from the BL..., road-
side controllers can communicate to the following controllers, access restriction to
private CVIS vehicles and pre-emption procedure in order to prevent BL. congestion
and/or queuing at crossing / traffic lights.

The plates of non CVIS vehicles and CVIS vehicles without license are captured via
video enforcement system and RSU respectively.

10. RSU sends plates and other information (time, vehicle category, location... when

available - indeed for non CVIS vehicles it might be more difficult to get accurate time
and coordinates especially if no video enforcement system is available) to the
violation management centre.

11. RSU collects all traffic information about both BL. and normal lane along its section

(number of licenses, queue length, speeds, violation details, statistical data...).

A specification of the BL allocation is shown in Figure 191.

sd Activity Diagram /

PT vehicle PTIC vmMe R5U CVIS vehicle

sends data to PTHC
.

vehicle
process start

Approaches BL (first time
or renewal)

periodically sends data
for estimation to the RSU

leaves bus lane and
-] come back to reqular lane

Figure 191: Activity diagram BL allocation

04-06-2010 237 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.10.4 High level composite architecture

The high level composite architecture model of the flexible bus lane application is specified in
Figure 192.

emp Cemponent Diagram EL Application /

Co. 2.4, Subscription Co.2.5.Local Dynamic
Manager (FOAM] Map [POMACOMO)
Road Side Unit / Vehicle E S); /
=) & 1B /"")
R5U BL Application E i
syer
/ Co.1.4.
Subscription
Co.2.3 Enfercement ,_()_ Co.0.1 Vielation L | Co.0.4. Manager [wveh} E
Moniter (FOMAM) Manager Subscription Co.4.2 Vehicl
manager [R5U} Veh BL AppliEation R‘;'ut;_n'g En';l:e

Co.2.1.Traffic _(:)_ Co.0.2. - Co.0.6.BL
Manager {COMO) Intersection lManager Co.1.1.HMI BL
Meniter Layer

Co.22.PT I'tl'laﬂage?EI __()_ Co.0.2BL E Co.0.5 R5U E Co.1.5.\u’ehic|e€|
{COomMo) Wehicle Menitor License Manager License Manager

O\ Co.2.6.Routing
Engine [CURE}

Figure 192: Component diagram flexible bus lane application

Co.0.1.Violation manager: manages any kind of violation forwarding to each suitable
manager the actions-set to perform. It transmits any collected data regarding the detected
violation.

Co.0.2.BL vehicle monitor: monitors the vehicle when it's allowed to access a BL, from its
entry to its exit. It intercepts any information regarding PT vehicles (data coming from
PTMC) to empty the BL and/or to deny access to further vehicles.

Co.0.3.Intersection monitor: It's the component inside the RSU that gives the estimated time
to reach a green wave/go through a road section (both BL and not).

Co.0.4.Subscription manager (RSU): check that a subscription sent from a vehicle to use a
service is still valid.

Co0.0.5.RSU license manager: maintain licenses distributed to the allowed vehicles to access
a given available service.

Co0.0.6.BL manager: It's an RSU BL application component that manages the requests for the
usage of a BL. It manages both applied licenses and check consistency with subscriptions
before to release any license. It checks BL needs to be emptied computing data gathered by
BL vehicle monitor.

Co.1.1.HMI BL layer: It's an extension of the usual HMI interface to allow the usage of the
BL application. Through that it's possible to ask the RSU to use a BL, to select a start/end
point for a journey, to reply at every message sent by BL application.

04-06-2010 238 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Co.1.2.Vehicle routing engine: It's a component that extends the routine engine (CURB) that
builds journeys considering BLs usage (BLs may be seen as POI - point of interest - to be
reached during journey).

Co.1.4.Subscription manager (veh): maintain any subscription that a vehicle (or driver)
owns to access a set of services.

Co.1.5.Vehicle license manager: maintain licenses to certificate the lawfulness of a service
use.

Co.2.1.Traffic manager (COMO): gives information to allow a RSU to calculate the queue
at next cross/traffic light, to go through a road section, to go through a BL.

Co0.2.2.PT manager (COMO): It gives information regarding the ETA, actual positions and
delays/advances of PT vehicles.

Co.2.3.Enforcement monitor (FOAM): manages any information regarding a vehicle
violation, and redirect to the appropriated institution.

Co.2.4.Subscription manager (FOAM): allow subscriptions interfacing between
subscription managers (RSU and vehicle).

Co.2.5.Local dynamic map (POMA/COMO): It represents the "cartography" and services
that allow the localization of the vehicle inside a given region. It also provides enriched maps
that may be swapped following the application to use.

Co.2.6.Routing engine (CURB): It gives a journey starting from the initial point and ending
to the destination point. It's extensible allowing the HMI BL layer to be built on top of it and
gives users a chance to select a BLs usage.

7.10.5 Deployment model

Figure 193 describes the logical deployment of the flexible bus lane application onto the
CVIS infrastructure.

deployment Depleyment Model /
aexecution envircnments sexecution envircnments
Road Side Vehicle
R5U Flexikle BL R5U Other 5P Veh. Flexible BL Veh. Other 5P
Application parts Mﬂm parts
wexecution environments
Centre
Centre Flexible Centre Other 5P
EL Application pents

Figure 193: UML deployment diagram

04-06-2010 239 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.11 Network assessment

The "Network Assessment" application and its main services are introduced in this sub-
section. Further details of the network assessment application can be found in the
D.CURB.3.2 "Architecture Specification" document.

7.11.1 Overview

The availability of the information from the vehicle is chance to improve traffic related basic
services and possibly to have an improved middle-long term planning of the infrastructure
itself.

The network assessment application is a tool that is aimed at measuring the performance of
the network. In particular the network assessment is aimed to:

analyzing the current state of the system,

assess the quality of the state of the network,

perform an off-line historical analysis,

provide ability to compare performance with or without the control system working.

The availability of data from the vehicle is a new source of information, nowadays only the
road infrastructure can provide traffic information. These new data (xFCD) from the vehicle
represents:

new data at all,
extended coverage of already available data,
incremented reliability, since it will be a separate source for the same data.

Thus incorporating this data into traffic system will allow having more precise knowledge of
the traffic status, for middle-long term planning, maintenance and tuning.

The application is aimed at identify anomaly of the network caused by, for example:
road congestion event,
inefficient intersection regulation/control,
traffic model issue.

The network assessment function is designed to be running on the central system, possibly in
the same location of the traffic control system or the traffic manager system.

04-06-2010 240 Version 1.0

CVIS Architecture and

‘(cv S System Specifications

Main use cases and system boundary
The main use cases and the system boundary of the traffic control assessment application is

depicted in Figure 194.

uc UCs and System Boundary /

CURB - Network Assessment

AN

Traffic controller will provide
data on the

traffic; Traffic control also
provides network parameters
and model.Traffic Control
receive congestion events
information.

UC39 - Network Operation
Assessment

/
o

TrafficManage!

Congestion Warning

TrafficControl

Network Analysis

Figure 194: Use case model with system boundary

The use cases are as follows:
Network operation assessment: This use case describes the feature of assessing the

working state of the network. This is a important tool for the traffic manager to decide on
strategic infrastructure work, to tune the control system, to identify critical area of the
network. Network assessment is aimed at real time and on-line monitoring of the network
status, tuning of network parameters, network model assessment. The information is then

used for congestion warning.
Congestion warning and network analysis are specialization of the network assessment

UCs.
The actors and their needs and responsibilities are described in the following:

Traffic manager: Organisation responsible for maintaining the roads and managing the
traffic on it. The traffic manager operator wants improve traffic control and traffic
management by defining and implementing cooperative control and management

strategies.

Version 1.0

04-06-2010 241

‘(" cv S CVIS Architecture and
System Specifications

7.11.2 Application programming interface

The API of the traffic control assessment is depicted in Figure 195.

cmp API-Network assesment/

«interface»
API Network Assessment
configure_assesser: int
get_network performance_indicator_per area: int
get_network performance_indicator_per_intersection: int
get_network performance_indicator_per_turning_movement: int
get_traffic_event: int

+ 4+ + + o+

Figure 195: API of network assessment

The behavioural aspect of the API is illustrated with the example interactions below.

sd Behaviour Model NetworAssessment_1 /

Network
Assessment

Traffic Manager AP NetworkController
1

T
1
1
1
! send_local_events

B

1
1
1
1
1
i
1
' computeEvents
i
1
1
1

get_traffic_event

retrieve_events

-

send_events

send_event

[y i

(fromAPI) (from API)

Figure 196: Behavioural model network assessment application

04-06-2010 242 Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

The network assessor will also provide information/indicator at the different level of the
network and allow the configuration of the application as shown in the interaction model in
Figure 197 .

sd Behaviour Model NetworAssessment_Z/

Network
Assessment
Traffic Manager Application
1

T
i
get_network_performance_indicator_per_area !

retrieve_indicator

<]

1

send_indicator_per_area

[T

L
1
get_network_performance_indicator_per_intersection i
retrieve_indicator
send_indicator_per_intersection L
[L
1
get_network_performance_indicator_per_turning_m ovemen’t H

retrieve_indicator

send_indicator_per_turning_movement L
[T |
i
configure_assesser >JI_
< confirmation
o m e
! |
(from API)

Figure 197: Behavioural model network assessment application

04-06-2010 243 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.11.3 Information model

The information model of the "Traffic Control Assessment" application is depicted in Figure
198.

uc DIM-NA /

Time
TrafficMovememt - minute: int
- hour: int Zone
r le: i - C
green_cycle: int week day: int zone_id: int
day_type: int
month: int
TurningMov ement Road
turning_percentage: int - traffic_flow: int TrafficEvent
queue_length: int .
saturation_flow: int - e_vent_type:.mt
nominal_delay: int - time_from: int
time: int - time_end: int
current_delay: int

EventRule

UTCincident ;
parameter: int

road: int - threshold_value: int
incident_type: int
incident_severity: int

Figure 198: Domain information model network assessment application

In the Domain information model the following information is represented:
The static road network representation.
The traffic value as coming from the vehicle (xFCD) and RSU referred to the road.
Nominal status of the network.
Traffic events, as generated by the traffic assessment application.
Time dimension to represent historical data.
Event rule used to generate the traffic alarms.
Delay/flow information for historical trend analysis.

Incident coming from the UTC.

04-06-2010 244 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.11.4 Interaction model

The overall interaction process of the network assessment application is specified in Figure
199.

act Process NetWork assesmenl/

Compute Congestion
Events

""" = send xFCD

Vehicle ™~

integrate xFCD and local
traffic data

L4 "
N 7 Traffic manager

-
L«flow»

-

Bend local traffic data

-

LTC/UTC Preset Trend Analysis

Figure 199: Network assessment application - overall process

Scenario description

This section describes the scenario for the network assessment application. The network
assessment is a central application, thus it connects to the central. The cooperative traffic
information facility data access manager (NDM as described in the cooperative traffic
information facility document on architecture and specification). The network assessment
(NA) client has access to the granted data for the whole urban network. The NA application
also receives local incident information from the UTC/LTC. The data are integrated and
processed in order to extract basic data, as delay-flow pairs. Data are then stored and
presentation of delay-flow diagram or generation of traffic alarm can be performed.

To retrieve information from the RS, the NA shall either contact the central controller of the
traffic control function or use the LDM/Message manager in place as defined in the
cooperative traffic information facility.

04-06-2010 245 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

In the following diagram the basic activity flow diagram is represented. The cooperative
traffic information facility and UTC interaction are represented.

actactivity

RequestData

uTC

l Store&Process ‘

NACentre

Cooperative Traffic Infomation Facility

ImpimentRule
GenerateAlarm

PresentAlarm
PresentAnalysis

Figure 200: Network assessment activity diagram

04-06-2010 246 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

cmp HLCD

Cooperativ e Traffic
Information Facility

Q

Network Assessment |

)

Network Assesser _®_ Netw ork Data gl

Analyser

Congestion Warning _®_

\

(@)

Figure 201: Component diagram of strategy application

Network assessor: The network assessor component is responsible to define the current state
of the network and to store this information into the historical DB. This information is then
used by analysis tool to allow prediction events, compare current and historical state.

Congestion warning: This component is responsible, based on the assessed state of the
network, to detect anomaly. The component, assessing also the severity, can identify the cause
and to define counter actions. The identification of the anomaly is based on rules.

Network data analyser: This component is the user interface to access the traffic assessment
data. It provides information at link, area or network level, comparing historical information.

Cooperative traffic information NMD: It represents the access point to traffic data, as
defined in the COMO Architecture and specification.

Network controller: It is the function of traffic control for the urban network.

04-06-2010 247 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

7.11.5 Deployment model

The deployment diagram of the network assessment is depicted in Figure 202.

deployment Deployment Netw ork Assessment/

«execution environment»
RSU

. 1 «execution environment»
Cooperative Traffic
Information Facility L G
LDM
network
assessment
application
«execution environment» E
Vehicle Cooperative Traffic
Information Facility
LDM

Cooperative Traffic
Information Facility
LDM

Figure 202: Network assessment deployment

7.12 Routing application

The routing application and its main services are introduced in this sub-section. Further
details of the routing application can be found in the D.CURB.3.2 "Architecture
Specification" document.

7.12.1 Overview

The dynamic routing of drivers in the urban context aims at the reduction of congestion and
travel time within the urban network, thus enabling a better use of the urban road network.
While achieving this task, routing in the urban network shall also take into consideration other
factors that are defined by the traffic manager or, more in general, by the local public
authority. In particular the traffic manager sets the scenarios to be considered, which can
depend on events in the city, e.g. football match, weather forecast or pollution consideration.
The urban routing system receives then the strategy defined by the traffic management centre.

To perform the task of diverge drivers in the road network, the system shall transform the
strategy provided using an appropriate way of geo-referencing into a route that the driver is

04-06-2010 248 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

willing to follow. The only way to persuade the driver to follow the route is either because it
is more convenient for him/her (in terms of travel time, cost, pollution, safety) or because
some external enforcement. For the first case the driver shall be informed of the convenience
of the route suggested. This information can be the expected travel time for the suggested
route.

The application is aiming at providing suggestions of routes that take into consideration the
strategy of the network and the willingness of following the route.

Another aspect of following the strategy of the network, and not provide a selfish solution, is
that the other sub-systems of the traffic management system all act based on this strategy, so
that the maximum of the objective can be achieved. The integration with the other urban sub-
systems, notably collective routing and traffic control, would enable an integral strategy
implementation.

Main use cases and system boundary

The main use cases and the system boundary are specified in Figure 203.

uc UC Routing

CURB Routing Application

C37 Road Netw ork
State Monitoring

C22 Area Routing
communication
aspects

UC52 Travel time per
destination information
to driver

UC33 Network
Routing

driver

=X

Routing Service Provide

JC24 Local and Area Traffic
information distribution and
enrichment

UC32 Generate and provide
traffic state and incident
information to individual
vehicles

UC21 Local
Clustered Area
Routing Elaboratio

C23 Area Routing
for special road
community

! |
; :
)

: |
| |
! - S
| WC50 Interaction with !
! i Inter-urban system ; |
A i
P !
| '
"]
| '
i)

Figure 203: Use case model with system boundary

The use cases are as follows:

UC21 Local clustered area routing elaboration: The goal of this use case is to provide
route guidance advice generation at local and distributed level. The area of influence can
span from a single RSU, to a cluster of RSUs. The cluster can depend on the network and
the actual position of the constraint. The information can then be propagated at higher
level, to generate network level route guidance. The system will consider an incident or

04-06-2010 249 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

momentary disturbance in traffic flow. By conducting the determination of incidents and
the calculation of alternative routes within the local road-side infrastructure a highly
responsive local area rerouting is realised. The private vehicle drivers benefit from a
reduction in travel time and an increase of safety, while preserving network efficiency.

UC22 Area routing communication aspects: The goal of this use case is to provide : (i)
the communication of the route options to the driver and (ii) the computation of route
options based at infrastructure side based on the current locally available traffic
information.

UC23 Area routing for special road community: The goal of the UC is the modelling
and routing of special category driver and vehicle and the possibility to include special
rules in the network description, as the presence of special road class or traffic limited
zones.

UC24 Local and area traffic information distribution and enrichment: The goal of this
use case is the distribution of network and local traffic situation and short and medium
time prediction at network, area and local level. The information is supposed to come from
higher level and to be eventually enriched with more detailed information, both from
vehicle (private/commercial/public) and from conventional infrastructure based sensors.

UC32 Generate and provide traffic state and incident information to individual
vehicles: The goal of this use case is to provide consistent high quality traffic information
as on onboard service to the road user. The road user can request information about
incidents and traffic state in certain urban networks or parts of urban networks. The
information service is not connected with a routing service is therefore addressing certain
user groups.

UC33 Network routing: The goal of this use case is to support the implementation of
network wide traffic scenarios by giving routing advice to individual vehicles while
knowing their characteristics and destination and also the network wide traffic conditions.
By using individual information the road operator is able to offer, via a service provider,
several individual route options that cannot be offered in a collective way, e.g. by road-side
displays. The road operator can achieve better distribution of traffic by routing vehicles via
links with capacity resources.

UC37 Road network state monitoring: This use case is aimed at: i) Feeding traffic
planning assessment, for demand management and environmental assessment, ii) Feeding
network traffic operation assessment, for incident management, iii) Feeding traffic control
strategy assessment, for designing, tuning or operation of traffic control strategy

UCS2 Travel time per destination information to driver Actors involved are the driver
of the CVIS equipped vehicle, traffic management centres that provide the traffic
information and the road-side units in the CVIS network that distribute local traffic
information.

The actors and their needs and responsibilities are described in the following:

Driver: The private driver wants to travel through the urban network in a comfortable, safe
and efficient way. He is interested in being supported by dynamic information and
navigation systems.

Middleware facilities: Represents the CVIS basic and domain facilities (see part II of this
document)

04-06-2010 250 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Traffic manager: The traffic manager is responsible for managing the traffic in the urban
network. The traffic manager aims to reach a safe and fluent traffic flow in the urban
network by informing the road users and controlling the traffic flow. He tries to achieve an
increase of safety in the urban network by implementing due to the current traffic situation
certain cooperative traffic management scenarios. The traffic manager uses CVIS services
in the traffic management centre.

Routing service provider: The service provider procures services including the
corresponding content. The service provider represents a business related entity. He
supplies the necessary means to provide the business related support of a specific service
application. He is also responsible for delegating the task of service deployment.

7.12.2 Application programming interface

There are three interfaces provided by the routing application
Driver interface
Information interface
Data Exchange interface

These are specified in the following driver interface:

class Rodting AP driver /

winterfacen

Rotin lication
RoutingApplicationOriver Interface afep

+ RouteRequest] : waid
+ RouteReplyl : woid

driwer

o L Sase ode!)

Figure 204: API driver interface

For the RouteRequest method the following information is provided:
destination,
start point,
Vehicle type,
Vehicle ID,
route preferences.
For the RouteReply method the following information is received:
Reference route (waypoints) and route related traffic information:
o incident type,
o position,
o travel speed,

o travel times.

04-06-2010 251 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

The behavioural aspect of the API is illustrated with the example interaction in Figure 205.

=d Routing AF1 driver /

2 Fouting®pplication
AN

driver

route request including parameters

caleulated route and details

fmoar Lme Caze Wodel)

Figure 205: Behavioural model routing application driver interface

Information interface

class Routing APl infor mation /

winterfacex
\\\ RoutingApplicationlrfor mationInteface
RSU

Getlliban TrafficStated : woid RoutingApplication
Getlocal Trafficstate]) : void
GetlibanlncidentD atad : woid
GethajorincidentD atad) : vaid
Getlocallncidenthata]) : woid
Getlocallayen] : void

% // GetLinkList] ; woid

Urban Centre

o Uee Case Mode!)

o+ o+ o+ o+

o Uee Case Mode!)
Routing Service Prowider

o Uee Case Mode!)

Figure 206: API information interface

The methods are elaborated further below:

For the GetUrbanTrafficState and GetLocalTrafficState the following information on urban or
local traffic state is received:

travel time,
travel speed,
level of service in the urban network.

All information is geo-referenced. Reference route (waypoints) and route related traffic
information:

For the GetUrbanIncidentData, GetMajorincidentData and GetLocallncidentData the

04-06-2010 252 Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

following information on urban or local incidents is received (major incidents implies
information on incidents that might have a high input on traffic flow in the urban network):

incident type,
position,
starting time,
expected duration travel time.
For the GetLocalLayert the following information is received:

Information on local strategy to be considered by the vehicle routing engine. The local
strategy can either be defined using waypoints or by transferring the affected area sections
and their impedance factors.

For the GetLinkList the following information is received:
links,
allocated impedance factors.

High impedance factors are allocated to the links of the congested main routes and low
impedance factors are allocated to the links of the prioritized alternative routes.

The behavioural aspect of the API is illustrated with the example interaction in Figure 207.

=d Routing AFlinformation /

$ $ Q RoutingApplication
P A M
Urban Centre RSU Routing Service Prowider

send information global traffic state

T4

send information global incidents

"

=zend information strategies _—
T fie=
prowide processed information

[

caloulate
global route

send information Ilocal traffic state

\
send information local incidents

!
zend information local layer

caloulate
local route

#mar Uese Case oded)form Use Case ode!) from Use Case Mode!)

Figure 207: Behavioural model routing application information interface

04-06-2010 253 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Data exchange interface

class Routing AR data exchange /

winterfaces

Routing Appli cation Data Exchange intedface Asttinoapplicatien

+ GetdpplicationStatus)) ; void
+ GetCalculatedRouted : void

3rd party application
fow Uee Case lfode!)

Figure 208: API data exchange interface

The behavioural aspect of the API is illustrated with the example interaction in Figure 209.

=d Rodting AP data exchange /

$ RoutingApplication
EAS
2rd party application

request route details

prowide route details

use route details internally

request application status

provide application status

use

: information
i internally

e Uiee Case lodel)

Figure 209: Behavioural model routing application data exchange interface

04-06-2010 254 Version 1.0

«"CVIS

CVIS Archi

tecture and

System Specifications

7.12.3 Information model

This section provides the specification of the information model. The information model
identifies and defines the main concepts of the application domain. The concepts are specified
in terms of their types using UML class diagram as shown in Figure 210.

class Domain Routing Detail/

Route

add_information: int
end_location: int
ETA: int

link_list: int
start_location: int A

1

1

Strategy

Control_Rules: int
factor: int

Strategic_Routing_Information:

StrategyID: int
Trigger: int

int

TrafficManagementCentre

Vehicle

Vehicle_ID: int
Vehicle_Location: int
Vehicle_Service_Info: int
Vehicle_Speed: int
Vehicle_Status: int
Vehicle_Timestamp: int
Vehicle_Type: int
Vehicle_Use: int

RoutingCentre

centre-timestamp: int
centre_ID: int
info_validity: int
service_info: int

centre_ID: int
centre_timestamp: int
info_validity: int
service_info: int

o+ o+ o+

GenerateWaypointList() : void
GetlIncidentData() : void
GetRouteRequest() : void
GetStrategy() : void
GetTrafficState() : void
ProcessincidentData() : void
ProcessStrategy() : void
ProcessTrafficState() : void

+ ProvideWaypointList() : void

/
0.)

ActivateStrategy() : void

AssessStrategy() : void
GetlncidentData() : void
GetTrafficState() : void
PlanStrategy() : void
ProvideStrategyLayer() : void

RSU

CalculateRoute() : void
GetRouteRequest() : void
GetTrafficlnfo() : void
GetWaypointList() : void
ProvideRoute() : void

+ o+ o+ o+

RSU_ID: int
RSU_Service: int
RSU_timestamp: int
Service_Output: int

+

ActivatelLocallayer() : void
GetlLocallLayer() : void

GetLocalTrafficinformation() : void

N
1”k\
-
/
1.*

ComoCentre

centre_ID: int
centre_timestamp: int
info_validity: int
service_info: int

+ GetlncidentData() : void
+ GetTrafficState() : void

ProcessincidentData() : void
ProcessT rafficState() : void
+ ProvidelncidentData() : void
+ ProvideTrafficState() : void

ProcessLocallncidentData() : void |0..

ProcessLocalTrafficState() : void
ProvidelLocallLayer() : void

Trafficincidents

duration: int
position: int
starting_time: int
type: int

TrafficState

linkbased_LOS: int

link-based_traffic_flow: int

link-based_travel_speed:

link-based_travel_times: i

int
nt

Figure 210: Domain information model routing application

04-06-2010

255

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.12.4

Interaction model

The sequence of events of the routing application is as follows:

1.

10.

11.

12.

13.

The driver starts the vehicle; automatically the CVIS system connects to the CVIS
network.

The driver starts his navigation system and enters his destination and route criteria via
HMI into the system.

Based upon the driver's input and also the current vehicle position and vehicle specific
information, e.g. vehicle type, the in-vehicle CVIS system generates a route request.

This route request is transmitted to the CVIS service centre for further processing.

Furthermore the service centre also receives current traffic and incident data as well as
activated public strategies from the urban centre.

Based upon this information as well as on the driver's route request the service centre
calculates a reference route (way point list) and transmits it to the in-vehicle routing
system for further processing. In addition also route related traffic information, e.g.
congestion, accident, road works, are transmitted to the in-vehicle routing system.

The in-vehicle routing system analyses the received reference route and calculates the
precise route, i.e. the best route for the driver's request.

The calculated route as well as route related traffic information is communicated to the
driver via HMI interface.

The road-side units continuously inform the surrounding area about their presence and
the available services.

While driving, the CVIS vehicle connects to a nearby RSU that provides the needed
routing functionality.

If applicable, the in-vehicle CVIS system receives from the RSU an activated local
strategy (activation occurs based upon local traffic and incident data). Furthermore the
in-vehicle CVIS system also receives relevant traffic and incident information form
the RSU.

Based upon the activated local strategy the in-vehicle CVIS system recalculates the
route; the route update is communicated to the driver via HML

If there is no RSU available/nearby for a certain time interval while driving, the in-
vehicle CVIS system automatically connects to the CVIS service centre and asks for a
route update.

04-06-2010 256 Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

The overall interaction process is depicted in Figure 211.

AL

map prowider traffic irformation public authorities

provider
xinformations «informations zinformations
map dats dymamic data strategies
input input input
route request route calculstion route guidance
-2 . . -

wfl o afloww
wflovs wfl o

drivwer .
driwer

Figure 211: Reference service process routing application

7.12.5 High level composite architecture

This section provides specification of the high level composite architecture. The high level
composite architecture describes the overall architecture of the system and the partitioning
into sub-systems and components. It also identifies the interfaces and the relationships
between the sub-systems, components and interfaces.

04-06-2010 257 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

The high level composite architecture of the routing application is shown in Figure 212.

cmp Component_Routing /

Driver

SS.1 Vehicle

§S.2 RSU

$§8.3 Urban Centre

HLCD::C0.0.2.10 -
como

HLCD::Co.0.2.9 -
Ccomo

Local i L

HLCD::C0.0.3.10 -
como
CenterTrafficStatusPool

HLCD::C0.0.3.9 - COMO
CenterTrafficMessagePool|

HLCD::C0.0.2.7 - LocalLayerApplication

oo

local
strategies

«selected»

«selected»

HLCD:: Co0.0.3.7 - UrbanTrafficinfoManager

l

HLCD:: C0.0.3.3 -
UrbanStrategyManager

HLCD:: Co0.0.3.4 -

HLCD::Co.0.2.8 - LocallnfoApplication

StrategyTranslator

L -=7" strate

Traffic Manager

Jlocalf”

gies

S8.5 Service Centre
«selected»

Centerlnci

HLCD::C0.0.3.8 -

oo

HLCD:: Co.0.1.4 -
VehicleRoutingEngine

«selectedy

o

«selected»

«selected»

HLCD:: C0.0.3.5 -
CenterRoutingEngine

Figure 212: High level composite architecture routing application

HLCD:: Co.0.2.7 Local layer application This high level component is composed of three
sub-components whose functionalities are described in the following:

Local traffic info manager: This component receives local traffic info (traffic state &
incident data) from the cooperative traffic information facility. This component transmits
local traffic info to the local decision maker (to be considered for the activation of local
layers). This component transmits local traffic info to the local info application (to be
distributed to the vehicle).

Local layer DB: This component stores and provides predefined local layers. Local layers
are allocated to certain local traffic situations and consist of impedance factors for local
routes. Local congested main routes shall be avoided and local alternative routes shall be
prioritised by the vehicle routing engine.

Local decision maker: The local decision maker decides, based on the local traffic info
received from local traffic info manager, to activate a certain local layer (stored in the local
layer database). The activated local layer is transmitted to the vehicle routing engine for
further route calculation.

HLCD:: Co.0.2.8 LocallnfoApplication This high level component is composed of two sub-
components whose functionalities are described in the following:

LocallncidentModule: This component receives major incidents, e.g. congestion, road
works, road blocking, from the service centre incident module.

04-06-2010

258 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

LocallnfoProvider: This component receives local traffic info from the local traffic
manager (sub component of the local layer application) as well as major incidents from the
incident module and transmits both kind of information to the vehicle routing engine for
further processing.

HLCD:: Co0.0.3.8 CenterIncidentModule

This high level component is composed of two sub-components whose functionalities are
described in the following:

IncidentEvaluator This component recognizes major incidents (based on the information
received from the urban traffic info manager) and defines an area of interest where this
information should be distributed (via local RSUs).

IncidentDistributor:This component distributes the information on major incidents to the
local incident modules (sub-component of the local info application)

HLCD:: Co0.0.3.9 COMO centre traffic message pool: This cooperative traffic information
facility component provides incident data event triggered to the urban traffic info manager.

HLCD:: Co0.0.3.20 COMO centre traffic status pool: This cooperative traffic information
facility component provides a traffic state report for the urban network in fixed time intervals
to the urban traffic info manager.

HLCD:: Co0.0.2.9 COMO local message pool: This cooperative traffic information facility
component provides local incident data event triggered to the local traffic info manager.

HLCD:: Co.0.2.10 COMO local traffic status pool: This cooperative traffic information
facility component provides a traffic state report for the local urban network in fixed time
intervals to the local traffic info manager.

HLCD:: Co.0.1.3.NavigationSystem: The navigation system translates the precise route
(received by the vehicle routing engine) to a human readable information. The navigation
system generates the route request (based on driver's input) or the navigation system interacts
with the driver to define the destination.

Optionally the navigation system will interact directly with the centre routing to
request/display the route and to interact to proceed in the route. The off board navigation is a
client application that guides the user to his/her selected destination. Routes and maps are
downloaded dynamically from the centre router only when needed, covering the current user
position surroundings; therefore there is no need to have all the cartography stored on the
device. All information is updated to the current traffic situation and to updated cartography.
Maps are in SVG tiny format, a W3C standard for 2D vector graphics, especially suited for
mobile application with limited processing and memory capabilities. The user can have,
besides a visual navigation, turn by turn indications that are downloaded together with the
route.

The off board navigation will get the GNSS position either by itself or from an external
device application with which can be integrated as an external library.

HLCD:: Co.0.1.4.VehicleRoutingEngine The component transmits the route request
(received form the navigation system) to the centre routing engine. The component receives
the reference route (way point list) and route related traffic info from the service centre
(centre routing engine). The reference route (way point list) and traffic information are
processed within the vehicle routing engine. Result is the precise route and additional

04-06-2010 259 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

information, e.g. travel times, incident information, to be communicated to the driver (via
navigation system).The component receives the local layer (if activated) and local traffic info
for local route update. Furthermore also major incidents are received.

HLCD:: Co.0.3.3.UrbanStrategyManager This component stores, handles and activates
public strategies that are then transmitted to the centre routing engine (via strategy translator)
to be considered for the route calculation. The adequate strategies are selected by evaluating
information on the traffic status of the urban network (received from the urban traffic info
manager).

HLCD:: Co.0.3.4.StrategyTranslator This component receives public strategies from the
urban strategy manager and translates them into routing information, e.g. link list, to be
considered by the centre routing engine. There are three options for this component: 1) the
strategy is transmitted as a list of link, ii)the strategy is transferred as user equilibrium
solution, or iii) the strategy translator has an active role and reply for the only urban area to
request of the central router with waypoints for the requested route.

HLCD:: Co.0.3.5.CentreRoutingEngine

The component receives route requests from vehicle routing engine. Therefore it calculates
the "reference route" (way point list) based on the received traffic info (current traffic state &
incident data) and strategies (if activated). The reference route and route related traffic info
are sent back to the on-board routing component (vehicle routing engine) for further
processing.

HLCD:: Co.0.3.7.UrbanTrafficInfoManager

This component receives current urban network traffic state (fixed time intervals) and incident
data (event triggered). The information is transmitted to:

Urban strategy manager (for selection of the adequate strategy),
Centre routing engine (for dynamic route calculation),

Incident evaluator (for recognition of major incidents to be distributed to the local RSUs).
7.12.6 Deployment model
See Figure 212.
7.13 Strategy application

The strategy application and its main services are introduced in this sub-section. Further
details of the strategy application can be found in the D.CURB.3.2 "Architecture
Specification" document.

7.13.1 Overview

On top of traffic control, the traffic demand management system has the task to define the
strategy to implement in the traffic network. There could be various approaches to define the
traffic assignment. The two main solutions to this problem currently present are:

1. design of the strategy based on traffic status and prediction, traffic demand pattern and
statistical assignment,

04-06-2010 260 Version 1.0

«"CVIS

CVIS Architecture and

System Specifications

2. centralised selection of pre-defined strategy based on traffic status or traffic status

simulation or prediction.

These two schemes are based on the assumption that there is a scenario of operation that is
either selected by the traffic management operator, e.g. for special events, or in an automatic
fashion, e.g. base on period of the year or calendar.

The traffic demand management system gets information on historical data of traffic, on
traffic operator preferences and provides commands to the traffic control system and the
routing system. The system can also interact with public transport and parking systems.

Main use cases and system boundary

The main use cases and the system boundary is specified in Figure 213.

uc UC Strategy

CURB strategy application

UC35 Selection and
implementation of

cooperative traffic
management scenarios

C50 Interaction witl
Inter-urban system

Cooperative Traffic
Information Facilty

: State Monitoring

exi‘end
. i
| network mapagement
Traffic Manag::\,’ UC38 mobility
| ; management
B assessment

)

1

1

1

|
\ UC37 Road Network:
1

1

1

1

)

1

)

1

1

; operation assessment

,Ub34 evaluate traffic-.

I

I

:

I

I

I

:

I

:

7 UC39 network - |
|

I

I

I

I

I

I
imanagement scenarios: |
iy J: |
I

I

I

Figure 213: Use case model with system boundary

The use cases are as follows:

UC34 Evaluate traffic management scenarios: The goal of this use case is to evaluate
traffic management scenarios and to offer the road operator and the traffic manager to
prove, if the expected effects have been reached by the implementation of a certain
scenario. The operator is able to analyse the quality of the implemented scenarios in an off-
line process based on historical data. Based on the evaluation road authorities can find
resources in the network, plan traffic management scenarios and prove the reasonability of
the given routing advices. The operator is able to modify measures in the simulation model
and to evaluate the effect of the modifications. A result of this process may be a list of

04-06-2010

261

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

measures to be modified within the defined cooperative traffic management scenarios. The
evaluation of traffic management scenarios in an off-line simulation does not cover all the
main aspects of a cooperative scenario, but it is a prerequisite to provide a highly effective
cooperative traffic management system.

UC35 Selection and implementation of cooperative traffic management scenarios:
The goal of this use case is to select and implement network wide cooperative urban traffic
management scenarios based on the current network situation. The selection of the optimal
traffic management scenario is performed by a CVIS control model and an on-line
simulation model. The control model proposes a scenario from a list of pre-defined
scenarios. The scenarios consist of: i) control rules to be implemented in the urban
network, ii) information, i.e. on incidents, to be distributed via different media, iii) and
routes or corridors prioritised by the road operator to be provided to certain road user
groups A simulation model predicts the effects of the proposed scenario and the current
scenario and based on the results a decision is taken, if the current scenario retains
unchanged or the proposed scenario is going to be implemented.

UC37 Road network state monitoring: This use case is aimed at: i) feeding traffic
planning assessment, for demand management and environmental assessment, ii)feeding
network traffic operation assessment, for incident management, and iii) feeding traffic
control strategy assessment, for designing, tuning or operation of traffic control strategy.

UC38 Mobility management assessment: The goal of the UC is to obtain the possibility
to tune the transport models and to assess the traffic models. This ability is used by the
traffic manager and local authority for mobility and demand management. Different type
of information are usually integrated e.g. population, origin-destination pattern, public
transport planning data. Information, from vehicle and from conventional sources shall be
integrated and simulated in batch mode, i.e. without the need to be on-line.

UC39 Network operation assessment: The use case describes the real time and on-line
monitoring of the network status, the tuning of network parameters and the network model
assessment. The extracted information can be used for incident detection, congestion
warning possibly accident detection. The information is important for transport manager,
traffic operator and road users. The first to assess the operation of the network and possibly
to manage incident, the later to possibly avoid congested areas.

The actors and their needs and responsibilities are described in the following:

Traffic manager: The traffic manager is responsible for managing the traffic in the urban
network. The traffic manager aims to reach a safe and fluent traffic flow in the urban
network by informing the road users and controlling the traffic flow. He tries to achieve an
increase of safety in the urban network by implementing due to the current traffic situation
certain cooperative traffic management scenarios. The traffic manager uses CVIS services
in the traffic management centre.

04-06-2010 262 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.13.2 Application programming interface

The API of the flexible bus lane application is specified in Figure 214.

class API Control

StrategyApplication

activateStrategy() : void
getStrategylnformation() : void
recieptLinkList() : void
recieptStrategyControl() : void
requestRoute() : void

+ o+ o+ o+ o+

Figure 214: API Strategy application interface

The behavioural aspects of the provided methods are illustrated by means of the example
interactions with the routing application and network controller in the figures below.

sd behave Routing API /

StrategyApplication %

Routing Application

|
]
i
activate strategy i
1
1
1
]
]
1

provide link list

receipt link list

Figure 215: Behavioural model strategy application routing interface

04-06-2010 263 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

sd behave Routing API UE/

% StrategyApplication

Routing Application

activate_strategy

provide_user_equilibrium_strategy

provide_user_equilibrium_strategy

(from Use Case Model)

Figure 216: Behavioural model strategy application routing interface (user equilibrium)

sd behave Routing APl WPs /

% StrategyApplication

Routing Application

request_route

reply_strategy_WPs
< ply_. ay_

(from Use Case Model)

Figure 217: Behavioural model strategy application routing interface - WPs

04-06-2010 264 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

sd behave Control API/

StrategyApplication %

Network Controller
1

1

1
activate strategy i
1
1
1
1
1
1

send strategy_control

receipt strategy_control

Figure 218: Behavioural model strategy controller interface

class Routing APl infor mation /

winterfacex
\\\ RoutingApplicationlrfor mationInteface
RSU

Getlliban TrafficStated : woid RoutingApplication
Getlocal Trafficstate]) : void
GetlibanlncidentD atad : woid
GethajorincidentD atad) : vaid
Getlocallncidenthata]) : woid
Getlocallayen] : void

% // GetLinkList] ; woid

Urban Centre

o Uee Case Mode!)

o+ o+ o+ o+

o Uee Case Mode!)
Routing Service Prowider

o Uee Case Mode!)

Figure 219: API information interface

04-06-2010

265

Version 1.0

‘(" cv s CVIS Architecture and
System Specifications

7.13.3 Information model

This section provides the specification of the information model. The information model
identifies and defines the main concepts of the application domain. The concepts are specified
in terms of their types using UML class diagram as shown in Figure 220.

class Domain Strategy Detail /

StrategyRoute

end_locatiom: int
start_location: int
add_information: int

ETA: int
n - link_list: int
NetworkContraller e B =
o A 1
contral_rule: int Online Si mulator Centfe_|P- int .
intarzactionll: int cent.re_t!mest.?mp. int
strategylD: int ;er\rlce_!nfo: |.nt
WS _control_rale: ind g L oRualiditu it
VIS_ID: int
- 1 - GenerateWaypointlist]) ; woid
+ etlncidentlata) : void
7 + GetRouteRequesh] @ waid
+ GetStrategy(): void
- R+ GetTrafficState) : void
e e e bt + ProvideWaypointList]) : void
sentre ID: int - ProcessincidentDatal) : void
. centre;imestamp: int - ProcessStrateqyn) : woid
TrafficState serice_info: int 1 - ProcessTrafficState] : woid
link-based_LOS: int - info_validity: int 1
link-bazed_traffic_flow: int . -
link-bazed_travel_speed: int i GetTra.fflcStateO:\rolt‘:I
link-bazed_travel_times: int + Getincidenthatal) : woid o.r
AszessStrate gy : woid 1.7
- PlanStrategy) : void Global Strategy -
+ AptivateStrate g @ void q
1 n.r . “ehicl
+ Provide Strate gyl ayer) : void - Gtategyll: int =hicle
Trafficincidents 4 1\ Vg - Wehicle_ID: int
factor:_int Wehicle_Type: int
position: int - Wehidle_Use: int
duration: int - Wehicle_Status: int
starting_tima: int - Wehiele_Timestamp: int
type: int - Wehicle_Location: int
Wehicle_Semice_Info: int
Local Layer E “Wehicle_Speed: int
Q.7 a
factor: int
:rigogrermint CalculateRoute : void
StratequlD: int GetRouteRequest) : void

GetTrafficinfol) : wvoid
Fetiaypaintlist) : woid
Provide Route) : woid

o+

REU

RSU_ID: int
REU_Senice: int

- Serice_Output: int
0.7, REU_timestamp: int

+ GetlocallayenD : woid

ProvideLocallawen : woid

+ Activatelocallayen) : woid

- ProcessLocal TrafficStated : void
ProceszlocallncidentDatal) : waid

+ GetlocalTrafficinformation) @ woid

+

Figure 220: Information model of strategy application - link list

04-06-2010 266 Version 1.0

¢

) cv S CVIS Architecture and
System Specifications

7.13.4 Interaction model

The sequence of events of the strategy application is as follows:

1. The urban traffic info manager situated in the urban centre receives urban network
wide traffic state and urban incident data from COMO.

2. Incident data and traffic state are transferred to the strategy manager and optional to an
online simulation model.

3. Based on the current traffic situation the strategy manager chooses an adequate
strategy from a bunch of pre-defined strategies.

4. The control rules of the chosen strategy are implemented by a network controller.
The strategy information is provided to the service provider of routing services to be
considered when calculating routes for the urban network.

Optional:

3.a The chosen strategy is simulated in online-simulation.

3.b The online-simulation predicts the traffic quality for the next time intervals assuming

the implementation of the chosen strategy.

3.c Information about predicted traffic quality is provided to the strategy manager. The

strategy manager decides if the traffic quality is adequate or if another strategy shall
be implemented.

The overall interaction process is depicted in Figure 221.

aralysis Analysis Strategy

strategy definition strategy selection rategy =imulation strategy activation rateqy distribution strategy monitoring &
= e . ST B ST contral
CULTED wflown wflown wflon aflonin

T o 0 s TN T T

gemert_rertre

traffic_man

i
strategy defirition ' : ___ U preision of : '
considering general : ' on-line simulstion of : : i | strategies for : .
network : : seleted strategy : : : diffarert ; i
characteristics and '] : : : recipients .
traffic management : - ; ; :
purposes 1 | processing of activate selected H H H strategy
i traffic strategies and i i i evalustion
v | information perparation for H H i
distribution : i i

como_cerire

prowision of currert f i provision of feedback
traffic states and i i irforrmation fram
irfar mation H H wehicles

routing_certre

reception of activated
global strategies for
integration into rodting

rsu

reception of activated
local strateqies for
distribution to vehicles

Figure 221: Reference service process strategy application

04-06-2010 267 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.13.5 High level composite architecture

This section provides specification of the high level composite architecture. The high level
composite architecture describes the overall architecture of the system and the partitioning
into sub-systems and components. It also identifies the interfaces and the relationships
between the sub-systems, components and interfaces.Figure 222.

cmp Component_ Strategy /

55.3 Urban Center
HLCO::C0.0.2.10 - COMO HLCO:Co.0.23.5 - COMO
CenterTrafficStatusFPool CenterTrafficMessagePool
Co2128-
OnLineSi rulstor
wzelectedn uzelecteds Lo Traffic hanager
HLCD:: Co.0.3.7 - UrbanTrafficinfoManager HLCD:: Co.0.3.3 - UrbanStrategybanager ff:"
local strategies
RILED: C 052 - HLCD:: Co.0.3.4 - StrategyTranslztor -:::f---------------:
MetworkController

wselecteds local strategies
555 SenviceCenter S52 RE5U
HLCD:: Co.0.3.5 - Center RoutingEngine HLCD:Co0.2.7 -

wselecteds Local Layer Application

Figure 222: Component diagram of strategy application

The components are elaborated below:

Co.2.1.2.8. On-line simulator: This component receives current traffic status (incident data
and traffic state) from the urban traffic info manager as well as selected strategies from the
urban strategy manager. The on-line simulator predicts the forthcoming traffic status implying
the selected strategies and the current traffic situation. The predicted traffic state is assessed
and a quality factor for every selected strategy is returned to the urban strategy manager.

HLCD:: Co.0.2.7 Local layer application: This high level component is composed of three
sub-components: 1) local traffic, i1) info manager, iii) local layer DB

HLCD:: Co.0.3.2 Network controller: The network controller receives information on
control rules (based on strategies) for traffic lights and VMS to be implemented.

HLCD:: Co0.0.3.9 Traffic message pool: This cooperative traffic information facility

04-06-2010 268 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

component provides incident data event triggered to the urban traffic info manager.

HLCD:: Co0.0.3.20 Traffic status pool: This cooperative traffic information facility
component provides a traffic state report for the urban network in fixed time intervals to the
urban traffic info manager.

HLCD::Co.0.3.3. Urban strategy manager: This component stores, handles and activates
public strategies that are then transmitted to the centre routing engine (via strategy translator)
to be considered for the route calculation as well as to the network -controller.
The adequate strategies are selected by evaluating information on the traffic status of the
urban network (received from the urban traffic info manager). The selected strategies are
transmitted to the online simulator to be assessed regarding their estimated impacts on the
traffic state and their usefulness. The on-line simulator assesses the selected strategies and
returns a corresponding quality factor. Based on this quality factor the urban strategy manager
decides on the activation of the strategy. If decision is positive, the strategy is provided to the
centre routing engine.

HLCD:: Co.0.3.4 Strategy translator: This component receives activated public strategies
from the urban strategy manager and translates them into routing information, e.g. link list, to
be considered by the routing engine. There are three options for this component: i) the
strategy is transmitted as a list of link, ii) the strategy is transferred as user equilibrium
solution or iii) the strategy translator has an active role and reply for the only urban area to
request of the central router with waypoints for the requested route.

HLCD:: Co.0.3.5 Centre routing engine: This component receives route requests from
vehicle routing engine. Therefore it calculates the "reference route" (way point list) based on
the received traffic info (current traffic state & incident data) and strategies (if activated). The
reference route and route related traffic info are sent back to the on-board routing component
(vehicle routing engine) for further processing.

HLCD:: Co0.0.3.7 Urban traffic info manager: This component receives current urban
network traffic state (fixed time intervals) and incident data (event triggered) from COMO.
COMO information is transmitted to:

urban strategy manager (for selection of the adequate strategy),

online simulator (for strategy assessment).

04-06-2010 269 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.13.6 Deployment model

The strategy application deployment diagram is specified in Figure 223.

deployment Deployment Strategy/

Como Centre

RSU

Urban Centre LocalLayerApplication

UrbanTrafficinfoManager| StrategyManager

| | Routing Service Centre

OnlineSimulator StrategyTranslator CentreRoutingEngine

Figure 223: Strategy application deployment diagram

7.14 Traffic control assessment

The "Traffic Control Assessment" application and its main services are introduced in this sub-
section. Further details of the traffic control assessment application can be found in the
D.CURB.3.2 "Architecture Specification" document.

7.14.1 Overview

This application is aimed at assessing the traffic model and to estimate local traffic model
parameters. It is meant to be a local application that runs in parallel to the traffic control sub-
system and that allow the system to tune the parameters, estimate dynamic parameters and
possibly to assess the behaviour of the local traffic controller.

The dynamic parameters to be estimated are, for example:
turning percentage,
clearance capacity.

These parameters are estimated based on the data coming from the vehicle and local available
data. The local available data are:

traffic volumes,
density,
speed,

counting,

04-06-2010 270 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

O/D.
All this data are estimated from both vehicle data and local present information.
Main use cases and system boundary

The main use cases and the system boundary of the traffic control assessment application is

depicted in Figure 224.

MiddlewareFacilities

A

Vehicle Urban Traffic Controller

uc System Boundaries/

Traffic Control Assessment

Traffic Manager

/

Figure 224: Use case model with system boundary

The use cases are as follows:

UC Traffic control assessment: The aim of the UC is to feed data into control model,
assess and tuning the control model. Thus the monitoring data are used for traffic control
tuning, design and operation.

The actors and their needs and responsibilities are described in the following:

Traffic manager represents the organization responsible for maintaining the roads and
managing the traffic on it. The traffic manager wants improve traffic control and traffic
management by defining and implementing cooperative control and management
strategies.

Vehicle provides location information etc to be processed by the traffic control assessment
use case.

Urban traffic controller maintain the data describing the current local traffic situation.

Middleware facilities represent the CVIS basic and domain facilities (see part II of this
document).

04-06-2010 271 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

7.14.2 Application programming interface

The API of the traffic control assessment application is depicted in Figure 225.

class APl /

«interface»
TrafficControlAssessmentAPI

get_parameter: int
set_parameter: int
- - register_for_parameter_notification: int

TrafficManager

Figure 225: API of traffic control assessment

04-06-2010

272

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

7.14.3 Information model

The information model of the traffic control assessment application is depicted in Figure 226.

class DIM

DIM::Zone
DIM::
TrafficMovememt - zone_id: int
green_cycle: int
DIM::Road

DIM::TurningMov ement - traffic_flow: int

i - int queue_length: int

Shuliel EEEE saturation_flow: int P

itv: i e DIM::Vehicle

cltfsfgranc:s_capacny. m'F . nominal_delay: int

taffic_volume_demand: int T - origin: int
current_delay: int - destination: int
travel _time: int - time: int
mean_velocity: int
traffic_density: int
vehicle_counter: int

DIM::Time

minute: int
hour: int
week day: int
day_type: int
month: int

Figure 226: Information model of traffic control assessment application

In the domain information model the following information are represented:
The static road network representation.
The traffic value as coming from the vehicle (xFCD).
Traffic data from RSU, which are referred to the road.
Nominal status of the network.

Parameters of the traffic control model to be assessed.

04-06-2010 273 Version 1.0

CVIS Architecture and

‘(cv S System Specifications

7.14.4 Interaction model
The high level workflow of the traffic control assessment application is depicted in Figure
227. Data originated from the vehicle and the infrastructure are collected and integrated. The

data is then archived and parameter integrated. The data collected and processed is then used

for congestion warning and to allow analysis of the network.

analysis process

Send Vehicle

______ > Data

Vehicle \
Assessment Process
e >
7
1

Traffic Manager

(%)
@
>
%
C
—
(¢}

uTC

Figure 227: Reference service process traffic control assessment application

Version 1.0

04-06-2010 274

"‘ cv S CVIS Architecture and
System Specifications

From the sequence diagram in Figure 228 it is possible to see how the information is
exchanged. The UTC has the double role to provide local event data, provide current model
parameters and to get new parameters of inconsistence generated by the traffic control
assessment.

sd behavioural ~

«interface»
API::TrafficControl AssessmentAPI

utc

>

register_for_parameter_notification

set_parameter

1

1

[}

[}
—

Evaluate_paramters

assess_parameters

send_parameter_notification

———e

get_parameter

retrive_parameter

send_parameter

(from API)

Figure 228: Interaction model traffic control assessment application

04-06-2010 275 Version 1.0

"‘ cv S CVIS Architecture and
System Specifications

7.14.5 High level composite architecture

cmp HLCD

COMO - Vehicle) MO (RS-LDM
- Ve @ COMO (RS-LDM)

Traffic Control Asses$ment |

(©)
O
Traffic Control
Assessment [~ TTTTTTTTTTTTTTTTTToS
\/

Traffic Manager

Figure 229: Component diagram of traffic control application

Traffic control assessment takes the traffic model, the local traffic network and the data
from the vehicle and the RSU measurements. This information is then used to assess the
traffic model parameters that are used by the traffic control unit. The tuned information is
then sent to the traffic control unit.

04-06-2010 276 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

7.14.6 Deployment model

The deployment diagram of the traffic control assessment is depicted in Figure 230.

deployment deployment /
vehicle RSU
HLCD:COMO - @ HLCD:COMO (RS-LDM)
Vehicle LDM =4

5

HLCD::Traffic Control
Assessment

<_____

o

Traffic Manager

(fromHLCD)

Figure 230: Traffic control assessment application deployment diagram

04-06-2010

277

Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

8 List of figures

Figure 1: Architecture specification documents and their relationships.........cccccceceeneeriieeneens 6
Figure 2: CVIS SYStEIM OVETVIEWeeiiiuiieeiiieeiiiieeiiteeeieeeeiteesteeeesteeeseseeessseeensseeensseesssessnsseens 16
Figure 3: CVIS tope level architeCture...........covveeuienieiiieinieeieenieeie et 17
Figure 4: Continuous communication as a basis for cooperative SyStems...........ccccceeervveeennnenn. 18
Figure 5: CALM StandardsS...........cooueiieiniiiiienieeieesieeeeeee ettt 19
Figure 6: CVIS SYStEIM CONEXE ...eeriurireriiieeiiieeiiieeeiiieeeieeeeiaeesteeessseeessseeessseeessseeensseessssessnsseens 20
Figure 7: CVIS SUD-SYSIEIM OVEIVIEW ...ccuviriiiiiiiniiieiienieeniteeieesite ettt e e s e 21
Figure 8: Network of CVIS ROSES......ciiiiiieiiieeiiieeteeee ettt e ve e e eane s 23
Figure 9: CVIS concept; categories Of hOSEScoeiuiiiiiiiiiiiiiriieeiicceeeeeeee e 23
Figure 10: CVIS layered architeCture.........ccueeeiiieeriiieriieeeiieecieeeeieeesiee e sveeeseaeeeaaeeeanee s 24
FIGUIE 111 CVIS NOSE ettt et 26
Figure 12: CVIS VENICIC....ccuviiiiiiieiie ettt e e aaeeesaeeenanee s 27
Figure 13: High level CVIS sub-system archit€cturesccccceeveerveenieriienienneenicceeneee 28
Figure 14: Access tree data using LDMcoooiiioiiiiiiiiicicceee et 29
Figure 15: Co-operative road-side architecture for deployment Stage..........cccceeeevveerruveennnenn. 30
Figure 16: System overview for deployment and provisioningccceeccveeerveeerveeerveeennnenns 34
Figure 17: Deployment APL........ccooiiiiiiiieee ettt e 35
Figure 18: Provisioning APcoouiiiiiiiieeeeeeeee e e e e e an 35
Figure 19: Provisioning API of the CVIS hOStccociiiiiiiiiiiiiceeee e 35
Figure 20: OSGi ITECYCIE APL.....cc..oiiiiiieieeeeee ettt e et e e e s 36
Figure 21: Lifecycle states of JAVA OSGi bundlesc.cccooieriiiiiiniiiiiniiecncceeee 37
Figure 22: The DDS APL......ooeeeee ettt saeea 38
Figure 23: DDS information Modelcoceeiiiriiiiiiiiiiiceeeicee et 40
Figure 24: The search sequence modelccoeeiiiieiiiiiiiieiieccecee et 42
Figure 25: Illustration of publish subscribe SCenariocccceecveevienviieiieniiniiinicceeenne 43

04-06-2010 278 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Figure 26: DDS "Publish-Subscribe" SCeNario...........ccccveeeriireriiieeniieeniieesiee e esveeevee e 44
Figure 27: Mandatory SEIVICEcccueeeruueeriuiieeiiieeeiteesiteeeiteesiteeesiteeesaseeessseessabeessaseessreesneeens 45
Figure 28: The security framework reference pointscccoccveeevieeenciieenieeenieeesieeesvee e 46
Figure 29: SecurityMoOdUIE USE CASEeeriiiiiiiiieiiieeiieeeite ettt s 48
Figure 30: SecurityModule class diagrami...........cceccveeeiuieeiiiieniiieeeiie e esvee e e 50
Figure 31: Implementation CLASSESeiiiuiiiiiiiiiiiieeiieeeite ettt et 51
Figure 32: Communication use case dia@rammeevvueieriieeniieeniieenieeenieeeeiteeesireesieeesieeens 52
Figure 33: SecureCommunication class diagram............cccccveeeciieeniieeniieeeniieerieeeseeeevee e 55
Figure 34: Creating connecions, sending and receiving messages at the client side 57
FAgUIE 35: SEIVET STAIT-UP ..cutiieiiiieeiiieeiiieeiteeeiteeeriteeeiteeeieeesteeeesbeeessbeeessseeesseeesseeesseesnsneens 59
Figure 36: Sending and receiving messages at the Server..........ccoovvvvviiiiriieinieeeiieeeiee e 61
Figure 37 Implementation CIASSESccueieriieeiiieeiiieeiieeeieeeeiee et e steeesveeeseaeeeseaeeenveeenneeas 62
Figure 38: Implementation CLASSESeiviuiiiiiiiiiiiiieeiieeete et s 63
Figure 39 Authentication and Authorization class diagram...........cccceeceeeveinierieeniienneennenne. 66
Figure 40 Authentication seqUence diagram.............eevvueeerriieeriieeniieenieeerieeereeeireesireeeieeens 68
Figure 41 Logout SEqUENCE dIaZIamceevuvieeiiieeiiiieeiieeeieeeeieeeeieeesieeesaeeessreeeseseeesneeesneens 69
Figure 42 Service invocation S€qUENCe diagraml........cccueeeriuieeriieeniieenieeeniieeeieeeesieeesireesieeens 70
Figure 43: Information model for broadcast facility..........ccceeviieriiieniiiieriie e 71
Figure 44: Interaction for broadcast datacoooeeiiiiiiiiiieniieeiieeieeeee e 72
Figure 45: Class diagram for CONNeCction ManageT...........ccevveerruieerireeniueeenieeenreeesseeessveeennneens 75
Figure 46: A SOAP extension of the ConnectionFactorycccceeeviiieniienniiennieenieeeeeen 76
Figure 47 Application getting a CONNECIONeeerurieeiiieeeiieeniieeeieeesteeesreeessseeessseeessreeensneens 77
Figure 48: Sending a SOAP MESSAZE.......cccouuiiiiiiiiiiiiiiieeeiieete ettt e 78
Figure 49: Application manager - example information model..............ccccceviniiiniiinnnenne. 79
Figure 50: HMI high level composite architectureccooceeeviiiiniieiniieiieeeieeeieeeeenn 80
Figure 51: DEVICE tIEE USE CASES .eeeuvieerurieeririeeiiieeeiireeaitreeesireesseeessseeessseeessseeessseeessseesssseesssseens 81

04-06-2010 279 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Figure 52: Class diagram LDT admin Jayer.........ccccveeeiiiieiiieniieeciieeeiee et e 82
Figure 53: Class diagram data provider 1ayercoocueeiiiieniiiiiniieeieeeeeeeeee e 83
Figure 54: Local device tree information model.............ccoovveriiiieriiiiniiieeiie e 84
Figure 55: Entities for the interface to deviCe SENSOTISc...cocuieriiiiiieniiiiierieeeene e 85
Figure 56: Position and map matChing USE CASEScccueerruireriiieeriieeniieenieeenreeesiveeesireeeaneens 87
Figure 57: Interfaces of the position and map matching facility..........cccoeeveerviiinniiinnieennneen. 88
Figure 58: Position INfOIMALIONc..eeiiiiriiiriieniieeieeie ettt 91
Figure 59: Position and map matching example SCeNnario.........c.ccceveerveerieenienneenieenieeneeene 92
Figure 60: High level composite architecture for position and map related facilities. 93
Figure 61: Infrastructure position use case MOdelccecvieriiiieriiiieriiieeriee e 94
Figure 62: Class diagram for the infrastructure positioning of CVIS objects interface........... 94

Figure 63: Information model for the infrastructure positioning of CVIS objects interface ... 95

Figure 64: Interaction model for the infrastructure positioning of CVIS nodes....................... 96
Figure 65: Map provision use case MOdel...........ccccuiieiiiiriiieniiieeeiieeriee e e 97
Figure 66: Distinction between the PSF download & ActMap update mechanisms. 98
Figure 67: Map update APL.........cooiiiiieeieee ettt eaae e e aae e eane s 99
Figure 68: Information model for map update.cccceeeviiiiiniiiiniiiiiiieeeeeeeee e 100
Figure 69: Behavioural model with process flows and timing...........c.cccceceeevieniennienienneenne 101

Figure 70: Use case model for the SupplyLocationReference Interface. This UC describes the

AGORA-C encoding INTETACTIONS.cccveeerrieeriieeiieeeiteeeiteeesieeesseeesseeesseeessseesssseeessseesssneens 103
Figure 71: Use case model for the SupplyLocationReference interface. This UC describes the
AGORA-C decoding INTETACTIONSccveeererieeriiieeieiieeritieeireesseteesseeesseeesseeessseeesssesessseesnsneens 103
Figure 72: The LocationReference APL.ccccooiiiiiiiiiiiiiiieeeeeeeee e 104
Figure 73: Location reference information modelccccoeeuiieriiiieniiieeniieeieeeee e 105
Figure 74: Location reference interaction modelcccueeviiiiniiiiniiiiniieiieeeeeeeeeeee 105
Figure 75: Use case model for the GSP query interface.ccccoecuveeeviieeniieeniieeieeeieeeeee 106
Figure 76: Class diagram for the GSP query interface..........coccceevviiiiniiiiniienniieiiceeieeee, 107

04-06-2010 280 Version 1.0

‘(" cv S CVIS Architecture and
System Specifications

Figure 77: Information model for the GSP query interface.cccceevvveeviieeniieeniieeeeeeee, 108
Figure 78: Behavioural model for the geo-code method of the GSP query interface............. 109
Figure 79: Behavioural model for the reverse geo-code method of the GSP query interface.
.. 110
Figure 80: Behavioural model for the Map display method of the GSP query interface....... 110
Figure 81: Behavioural model for the route method of the GSP query interface. 111
Figure 82: Behavioural model for GSP data delivery interface.ccoecueervieennieennieennnen. 111
Figure 83: COMO system overview - COMO integration CONCEPLeeeruvreerveeerveeereveennnnes 112
Figure 84: COMO APL........oii ettt et ettt e et e e 113

Figure 85: Overview of the COMO data model, showing the hierarchy of the data classes. 115

Figure 86: Data processing / fUSiON PrOCESS.ueerurieririeriiieeniieeniteenieeerireeesireeeireesiree e 116
Figure 87: COMO APoouiiieee ettt et sttt et 117
Figure 88: Applications & COMO APooiiiiiiiii e 118
Figure 89: NetWork TranSpar€nCy.........coceerueirieenieeriienieiiee st eite sttt ettt 119
Figure 90: FCD Event in a Broadcast SCENAIIOceeuiieriiiieniieiiiieeieeeiiee et 120
Figure 91: Sequence diagram - FcdEventGeneration and message sender..........c...ccecueeueenee 121
Figure 92: Sequence diagram - FcdEventGeneration and message reCeiverco.ueenn.... 122
Figure 93: COMO compoSite diagramml.........cceevueeriieriienieiiienieeiee sttt e e e 123
Figure 94: Execution environment PATLSeeerureeriieeeriieeenieeenieeenieeeseeessireesniseesnnseesnees 125
Figure 95: Interactions betWeen layers.coviiriieiiieiiiiiiienieeieese ettt 127
Figure 96: Service 1ayer APL.........ccooo i 128
Figure 97: Communication iNfraStrUCTUIecoueeuieriiiiiienieeiee ettt iee st 130
Figure 98: CALM communication StaCK..........ccueeriuiiiriiiieniiiiiiieeieeeieeeeee e 131
Figure 99: ITS station reference architeCture..............coocueiviiriiiiiiiniiiiieiceeeeeeeeee e 132
Figure 100: CVIS COMMUNICAIONeeiuiiiiiiiiiiiieeiiieeeiie ettt et e it e et e s 133
Figure 101: Detailed domain process model.............cccvreeiiiieriiiieniiieeniieeiee e 134
Figure 102: COMM component dia@ram............ceevueeeriieeriieeniieeniieenieeenieeeesireessineesieeesnnees 135

04-06-2010 281 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Figure 103: Communication infrastructure management interface..........c.ccceevvveerveeerveennnen. 136
Figure 104: Management API (CALM).....c.coiiiiiiiiiiiiiiieeeeeeete et 137
Figure 105: CALM data StIUCHUTES......ccuveeeruieeeiieeeieieeeieeeeieeesreeesseeesseeessseesnsseeensseessssesssees 138
Figure 106: Management SEQUEINCEceeruueeiuieeriiieeniieeeiteesiteesieeesbeeesiteessiteesnareesareesanees 139
Figure 107: Communication infrastructure data transmission interfaceccccceeeruveennen. 140
Figure 108: Data AP ..ottt e e e 141
Figure 109: Data SOCKEL.eeiiiiiiiiiiiiiiie ettt ettt et e e e 142
Figure 110: Data SEQUENCEccuvieeiuiieeiiieeiieeeiiee ettt e eieeeeieeeseeeesteeeeaee e saeeessbeeesseesnnneeensnes 143
Figure 111 Overview of the DG appliCationsccocueieriiiieriiieniieiieeeiee e 147
Figure 112: Main use cases and system boundary for the DG application............c.ccccuveen..... 148
Figure 113: DG information model.............cccooiiiiiiiiiiiiiiiiieieee e 149
Figure 114: Sequence diagram for the DG vehicle route guidancecccceecveeeeveeernreennnen. 150
Figure 115: Domain model for the DG vehicles mOnitoringccccceveervieenieenienneeniiennneene 151
Figure 116: Activity diagram for DG vehicle route guidanceccceevveeenvieenieeenveennnen. 152
Figure 117: Activity diagram for DG vehicles monitoring.........c.ceecveeveervieenieenienneenieenneene 153
Figure 118: Activity diagram for DG vehicle hand-over............ccccceeeviieniieeniieciieeeeeee, 154
Figure 119: Activity diagram for DG preferred network managementc.ccceceerieeneenee 155
Figure 120: High level composite architecture for the DG applicationcccceeevveenreennnee. 157
Figure 121: Deployment diagram for the DG vehicles monitoringcccceeeceeeveeniieenneene 158
Figure 122: Overview of the parking zone application............ccceeecuveeriiieeniieeniee e 159
Figure 123: Use case model with system boundary for the parking zone use cases.............. 160
Figure 124: External interface of the urban parking zone application...........c.ccceeeveeeruveennnen. 160

Figure 125: Sequence diagram describing external actor interaction with the urban parking

ZONE APPIICALION. ..ceeteeeniiieeiieeeiieeette et ee et ee ettt e et eeesateeetaeeebaeesnsaeesnsaeessseeensseeessaeensseesnsneens 161
Figure 126: External interface of the highway resting area applicationcccceevveeennee. 162
Figure 127: Domain model for the parking zone applicationccccceeevveeerieeenieeeneeennnen. 162
Figure 128 Role diagram for urban parking zone applicationc.ccceeveeervieennieennneennnen. 164

04-06-2010

282 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144:
Figure 145:
Figure 146:
Figure 147:
Figure 148:
Figure 149:
Figure 150:
Figure 151:
Figure 152:
Figure 153:

Figure 154:

Diagram for highway resting area application...........cccccueeecieeeeieeenciieenieeenieeenne 165
High level composite architecture for the parking zone service..........cc.c.ee..... 166
Deployment diagram of the parking zone applicationsccceevcvveerveeeruveennns 167
ACCESS CONITOL....einiiiiiiiiieiieete ettt 168
Main use cases and system boundary for the access control application 169
External interface of the access control applicationccccceevvieevieennieennneen. 170
Access control information model...........ccceociiiiiriiiniiniiineecee 171
Role diagram for approaching access control area.............ccceeeeveeerveeerveeenveennns 172
Role diagram for decision making and information feedback.............c..cc......... 173
High level composite architecture for the access control application 174
Deployment diagram of the access control applicationscccceeeceeevueennenee. 175
CTA use case model with system boundary...........ccceeeveeeiiieeniieeniieeniieeieeenns 177
CTA APttt sttt st es 180
Domain information model for CTAcoociiiiiiiiieeeeee 183
Activity diagram for pre-trip planning and support for on-trip planning........... 184
Activity diagram for on-trip CO-OPETrationcecvveeevuvrerrieeenieeenieeerreeereneennns 185
Activity diagram for trip planning and S€rvice SUPpPOIt.........ccccceevveerveenueenueennne 186
Activity diagram for tax and toll harmonisation...........ccceeeceeereiieenciieerieeerieennns 187
High level composite diagram for CTAccoooiiiiiiiiniiiieeeeeeeeeee 188
EDA use case model with system boundary...........ccccceeveveenciieenciieenieeeiee e 191
EDA external interfacecoceevueeriiiieeniiiiieieeeeeeee e 194
EDA information modelcoceiiiiiiiiiiiiiiieieeeieeeeee e 195
Sequence diagram for informing the driver about the current speed limit......... 196
Sequence diagram for ghost driver detection by vehicle..........c.ccccceeevvienninnn. 197
High level composite diagram for the EDA applicationc...cccceevcveeeennennne. 198
Deployment diagram for the EDA application..........ccccceeeviiieriieeniieeniieeieeens 199

04-06-2010

283 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Figure 155:
Figure 156:
Figure 157:
Figure 158:
Figure 159:
Figure 160:
Figure 161:
Figure 162:
Figure 163:
Figure 164:
Figure 165:
Figure 166:
Figure 167:
Figure 168:
Figure 169:
Figure 170:
Figure 171:
Figure 172:
Figure 173:
Figure 174:
Figure 175:
Figure 176:
Figure 177:
Figure 178:
Figure 179:

Figure 180:

Use case model with system boundarycccccveeeviieeniiiieniieeniie e 200
API information appliCatiONceevuueeriiiiiriiieeiiieeriee ettt 202
Behaviour model information applicationcceccueeevieeriiieeniieeeniieeeiee e 202
Domain information model information application............ccceevveevvveerrveennneen. 203
Reference service process information applicationcceeeeeveeerveeenveeenveennns 204
Component diagram priority appliCation..........ccueevvueeeriieeniiieeriieenieeeiee e 206
UML deployment dia@ramcc.eeevueeeeiiieeniiieeniieenieeesieeesieeesree et e e e 207
Non-formal representation of the priority applicationccccueevveeennnnn. 208
Use case model with system boundaryccoceeeviiieniiiiniieiniieeieeeeeeeeene 209
APT priority appliCatioNeeevieeriieeiiieeiieeerteeesteeesiee e e e esteeesebeeeseaeeeereeenns 210
Behavioural model priority appliCationccueeevueeeriieeniiieeniieeniie e 210
Domain information model priority application...........ccueeevuveerciieeniieenieeenieennns 211
Reference service process priority applicationcceecveeevveeenieeenieenseeenineen. 211
Activity diagram priority appliCAtioNccceeerveeerieeeiireeieeeeiieenieeesveeenereeenns 212
Component diagram priority appliCation..........ccueevveeeriieeniiieeniiieenieeeiee e 215
UML deployment dia@ramccveeeruieeeiieeeiiieeeiieesieeesieeesneeesneeessneeessveesnnneens 217
Use case model with system boundaryccoceeeriiieniiiiiniieiniieeieeeeeeeeene 218
APT SPEEA PIOTILE ..ottt e e e e 219
Behavioural model speed profile...........cccoovieiiiiiiiiiiiniiiiice e 219
Domain information model speed profile............ccecvvveeiiieniiieniieeniie e 220
Reference service process speed profile..........coocveeviiiiniiiiiniiiiiniieiiiieeieeeeeene 221
Activity diagram Speed Profileccceeeeveeiiiiieiiiieeiiie e 221
Component diagram priority appliCation..........ccueevvveeriiieeniiieeniieeniie e e 223
UML deployment dia@ramccveeerieeeiieeeiiieeeiieeeieeesieeesaeeesneesseveeeseveesnneens 224
Cooperative traffic control OVEIVIEWcoccueeriiieiiiiieniieeiiieeriee et 225
Use case model with system boundarycccccveeeviveeriieeniieeniie e 225

04-06-2010

284 Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Figure 181:
Figure 182:
Figure 183:
Figure 184:
Figure 185:
Figure 186:
Figure 187:
Figure 188:
Figure 189:
Figure 190:
Figure 191:
Figure 192:
Figure 193:
Figure 194:
Figure 195:
Figure 196:
Figure 197:
Figure 198:
Figure 199:
Figure 200:
Figure 201:
Figure 202:
Figure 203:
Figure 204:
Figure 205:

Figure 206:

Cooperative traffic control APoccoiiiiiiiiiiiieieeeeece e 226
Sequence diagram cooperative traffic control applicationc..ccceeeveerrueeennne 226
Domain information model cooperative traffic control application................... 227
Overall workflow of the cooperative traffic control application............cc.......... 228
High level composite architecture, cooperative traffic controlccc........ 229
Non-formal representation of the flexible bus lane application 231
Use case model with system boundaryccocceeeviiieniiiiniieiniieeieeeeeeeeene 232
API flexible bus lane appliCation...........cceeevveeeiiieeiiieeiieeeee e eeieeeaee e 233
Behavioural model flexible bus lane application.............ccccceeeviieiniienniiennieenne 234
Domain information model flexible bus lane applicationc.ccceevveeeruveennne 235
Activity diagram BL allocationcooccueiiiiiiiiiiiniiiinieeeeeee e 237
Component diagram flexible bus lane applicationccceeeevveerciieeniieeenneennns 238
UML deployment dia@ramc.eeeerueeeeriieeniiieeniieenieeesieeesiieeesiree e e e sieeeas 239
Use case model with system boundaryccceccveeevieeriiieeniieeniie e 241
AP of NetWOrk asseSSIMENLceviiriiiriieniienieeieeeie et 242
Behavioural model network assessment applicationcceeeveeereiieerieeenneennns 242
Behavioural model network assessment applicationcceecveeevieernieennneenne 243
Domain information model network assessment application............cccceeevuveennne 244
Network assessment application - overall Processcccevcveeevieeerveennveennneen. 245
Network assessment activity diagramcccveeevvieeriieeniieeeniieenieeerieeesevee e 246
Component diagram of strategy appliCation...........cceeevvueeeriiieeniiieeniieeieeereeenane 247
Network assessment deplOYMENt..........cccveeeriiieeiiieniiieeniieeeiee e erveeeireeeeneees 248
Use case model with system boundaryccoceeeviieeniiiiniieiniieeieeeeeeeeene 249
AP Ariver INterfaceooouiiiiiiiiiiiiiiee e 251
Behavioural model routing application driver interface.........c..ccocceevvveereennennee. 252
APT information interfacec.coeovueiiiiiiiiiiiiiiiicece e 252

04-06-2010

Version 1.0

«"CVIS

CVIS Architecture and
System Specifications

Figure 207:
Figure 208:
Figure 209:
Figure 210:
Figure 211:
Figure 212:
Figure 213:
Figure 214:
Figure 215:
Figure 216:
Figure 217:
Figure 218:
Figure 219:
Figure 220:
Figure 221:
Figure 222:
Figure 223:
Figure 224
Figure 225:
Figure 226:
Figure 227:
Figure 228:
Figure 229:

Figure 230:

Behavioural model routing application information interface..............c.cceeuveennn. 253
API data exchange interfaceoooueeeiiiiiiiiiiiiiieeee e 254
Behavioural model routing application data exchange interface 254
Domain information model routing applicationccccceeevveeerieeeniieennieenineen. 255
Reference service process routing applicationcccueeeeveeercieeencieeenveeeneeennns 257
High level composite architecture routing application............cccccveeevveeesiveennnen. 258
Use case model with system boundaryccocceeeviiieniiiiniieiniieeieeeeeeeeene 261
API Strategy application iNterface.........c.ceevvveeeiiieeiiieniiiecee et 263
Behavioural model strategy application routing interface...........cocceeevveernueennne 263
Behavioural model strategy application routing interface (user equilibrium).... 264
Behavioural model strategy application routing interface - WPs....................... 264
Behavioural model strategy controller interface...........cceeeevveerciieenciieenieeenieennns 265
API information INterfacecoceevviriiieniiriiiinieieeceeeeeeee e 265
Information model of strategy application - link list..........ccceeeeuveerciieeniieenieennns 266
Reference service process strategy applicationccocceeevieeenieennieennneennineen. 267
Component diagram of strategy appliCation...........ccueeevveerriveeniieeeriieenieeesveeenns 268
Strategy application deployment diagramcccceeevveeerieennieennieeniieenieeenane 270
Use case model with system boundaryccccccveeevveeriieencieeeniie e 271
APT of traffic control asSeSSMENL........cccueereiriiiriiriieinienieeieeee e 272
Information model of traffic control assessment applicationccceeeeuvennne 273
Reference service process traffic control assessment application 274
Interaction model traffic control assessment applicationccccceeerveeereveens 275
Component diagram of traffic control applicationc.ccceevcveeeniiennieennieenne 276
Traffic control assessment application deployment diagramcccceeeneen. 277

04-06-2010

286 Version 1.0

