Cooperative Vehicle-Infrastructure Systems (CVIS)

Project presentation

September 2006

CVIS Objectives

The CVIS Integrated Project will create the unified solution for seamless cooperation between vehicles and infrastructure elements, resulting in increased efficiency, mobility and traffic safety on all European roads.

Creating a wireless network between vehicles and infrastructure "Always best connected"

Increasing efficiency and safety through vehicle-infrastructure cooperation "Traffic management by addressing individual vehicles"

Cooperative Monitoring of the Traffic Situation - sharing the Knowledge "Always best informed"

Standardisation and pan-European deployment "Install once - always updated - drive anywhere"

CVIS high-level goals

 to create a unified technical solution that will allow all vehicles and infrastructure elements and nodes to communicate with each other in a

Seamless communication

services to run on an open application framework in the vehicle and in roadside equipment;

• to define and validate an architecture and system concept for a number of cooperative system applications, and develop common core compenents that

her

Cooperative applications

key stakeholuca

compatible roadside in

• to develop an open and interoperable concept for cooperative systems, based on a standards based open source technology platform and common soliware. Connect to anyone; everywhere

CVIS innovations

- The CVIS Integrated Project will develop and integrate the essential basic and enabling technologies such as
 - a multi-channel communications and network platform readily adaptable for both vehicle and roadside
 - a highly accurate positioning and local map module
 - an open software environment for applications.
- Combined into a "CVIS platform" unit, these components will allow a vehicle to share urgent information with nearby vehicles, and to dialogue with both the immediate roadside infrastructure and with infrastructure operators and service providers.
- New tools for "cooperative monitoring" will both deliver real-time traffic information over the entire road network, and augment the information available to local control functions such as intersection controllers.

The main figures

- Consortium: 61 partners (from 12 European countries)
 - Vehicle OEMs
 - Public authorities
 - Road / Telco operators
 - Service Providers
 - Application Software Developers
 - Traffic Equipment Suppliers
 - Equipment Suppliers
 - Research Institutes
- Timeframe: 2/2006 1/2010
- IP Coordinator: Paul Kompfner, ERTICO
- Project officer: Francisco Ferreira, DG INFSO
- Overall Cost Budget: 41 M€ (European Commission funding 21.9M€)
- **Sub-projects:** 16 (3 horizontal, 4 application, 3 technology, 6 test sites)

Project structure and flow

Technology Sub-projects

COMM (Communication and Networking)

- Implement CALM the standards
- GPRS (2G/3G), DSRC, IR
- "CVIS router" "always best connected"
- Alpha, Beta, Gamma test beds => "CALM suit-case" for test sites

POMA (Positioning, Mapping and Location Referencing) Enhanced positioning through sensor fusion

- Enhanched map data accuracy / resolution
- Map update technology and architecture
- "Local dynamic maps" mapping moving objects in the vicinity with position and trajectory

FOAM (Framework for Open Application Management)

- OSGi-based, use results from previous projects (3GT => GST => CVIS)
- CALM-enable GST platform => "CVIS Host" (for applications)

Coordination Sub-projects

IPMAN (IP Management)

- Technical management
- Administration and support
- Finance
- Dissemination

• CAG (Core Architecture Group)

- High-level architecture
- Methodology and templates
- Progress monitoring
- WP coordinations across SP's

• **DEPN** (Deployment Enablers)

- 1) Openness and interoperability
- 2) Safe, secure and fault-tolerant design
- 3) Utility, usability and user acceptance
- 4) Costs, benefits and business models
- 5) Risks and liability
- 6) CVIS as policy tool
- 7) Deployment road-maps

CVIS Applications

- Cooperative Urban Applications
 - Cooperative Network Management
 - Cooperative Area Routing
 - Cooperative Local Traffic Control
 - Cooperative Dynamic Bus Lane

- Enhanced Driver Awareness (EDA)
- Cooperative Travellers' Assistance (CTA)
- Cooperative Freight and Fleet Applications
 - Monitoring and guidance of dangerous goods
 - Urban loading zone and highway parking slot management
 - Access control to sensitive infrastructures

- Cooperative Monitoring
 - Collection, integration and delivery of extended real-time information on individual and collective vehicle movements, and on the state of the road network.

CVIS Architecture

Cooperative Freight & Fleet SP

Cooperative Freight and Fleet Applications (CF&F)

- Monitoring and guidance of dangerous goods
 - Reporting and monitoring system, GIS-based
 - Handing over supervision responsibilities between regions and countries
 - Off-board route guidance
 - Real-time Traffic Management influence over route choice
- Urban loading zone and highway parking slot management
 - Advanced booking
 - Monitoring availability, informing on delays
 - Local identification and access control (DSRC / physical barrier)
- Access control to sensitive infrastructures
 - Geofence / physical barrier
 - Identification of vehicles, allow or deny access
 - Driving style monitoring and driving style history evaluation

Monitoring of dangerous goods

Guidance of dangerous goods

