

Hybrid Fusion Module with IMM approach for Cooperative Vehicle Infrastructure Systems

Katia Demaseure katia.demaseure@navteq.com

7th European Congress & Exhibition on Intelligent Transport & Services 5th of June 2008 Geneva

Outline of the presentation

- 2. CVIS & its positioning facility
 - Focus on POMA
 - Positioning subsystem overview
 - POMA requirements

3. About hybrid fusion positioning

- What? How? Why?
- Probabilistic approaches
- Focus on IMM concept

4. POMA IMM prototype

- Overview
- Testing & data analysis
- Refinements
- 5. Next steps (on-going work) & conclusion

The full team of authors

- Assistant professor
- dominique.gruyer@inrets.fr

Alexandre Ndjeng

- PhD Student on Intelligent Systems
- alexandre.ndjeng@inrets.fr

Sébastien Glaser

- Researcher
- Sebastien.glaser@inrets.fr

Katia Demaseure

- Business Development
 Coordinator at NAVTEQ B.V.
- Leader of CVIS/POMA
- katia.demaseure@navteq.com

The CVIS world

POMA: focus on positioning

POMA positioning subsystem overview

INS/GNSS vehicle positioning requirements

- Data input: at least GNSS, Inertial sensor, RF power, AGNSS data
- Data output: latitude, longitude, height, time in WGS84 format, heading, speed
- Output frequency: 1 Hz (up to 10 Hz) or on request (maximum latency 100 ms)
- Accuracy: sub-meter accuracy level (i.e. lane level) locally (crossroads, bus lanes...)
- The position shall be available with a degraded accuracy in places where no external GPS signals are available

About hybrid fusion positioning

• What is this?

It is an algorithm able to

- 1. Predict how a dynamic system is evolving
 - 2. Correct the prediction done so far

How is it working?

By fusing all available sensors data exteroceptive (GPS) & proprioceptive (odometer, gyrometer, IMU, etc.)

Why do we need it?

Precise position is required for advanced navigation applications (like ghost driver, flexible bus lane allocation,...)

Hybrid fusion positioning: probabilistic methods

Kalman Filter

 Nonlinear system may diverge in case of strong nonlinearities

Unscented Kalman Filter

 Based on scaled unscented transformation for updating random data

DD1 & DD2

 Nonlinear filter approximated by polynomials

Monté Carlo Localization

Based on random generation of data sets

Our choice for CVIS

Interacting Multiple Model

- A complex model is subdivided into simpler submodels with associated probabilities
- Advantage: robustness

Extended Kalman Filter

 Kalman Filter extended to nonlinear case

Focus on IMM concept

Assessment of the current ego position

How IMM is prototyped with POMA

Our tests in Gothenburg with available sensors

Speed

data

Our data analysis

What we get

How the output (EKF, IMM, GPS) looks like?

How the IMM with probabilities output looks like

Further data analysis

What we have observed

- Identification of the sensors configurations and noises
- Problem of synchronisation detected
- Problem of CAN data → only positive speed → trouble with backward manoeuver
- we need to add 2 new models to the IMM approach: CS and CR
- With the current sensor (< 10hz) we need to provide positioning with a 10 hz frequency

Our refinements

What we have observed

 Identification of the sensors configurations and noises

What we need to do

Filters to be added & denoising

Tuning of parameters requires experience with sensors

- Problem of synchronisation detected
- Problem of CAN data
 - → only positive speed
 - → trouble with backward manoeuver
- With the current sensors (< 10hz) we need to provide positioning with a 10 hz frequency

- Clock synchronization with POMA sensors board
- Adding 2 new models to the IMM approach: CS and CR
- Adding a new filter for signed speed
- Extrapolation to be set up

Next steps: ongoing work

Some tests still need to be done:

- with EGNOS data
- with "POMA ultimate equipment"
- adding the map-matching module

Validation of the IMM positioning:

- Additional (expensive) sensors (RTK VG700, INS IXEA, Applanix,...)?
- Post-processing data denoising (for new calibration of the algorithm, towards autocalibration, ...)?
- Very very very precise digital map?

Conclusion

What did you learn today?

IMM positioning requires:

- A good knowledge of used sensors
- A refined data analysis for algorithm robustness
- Referenced tools/equipment for validating such approach

Thank you for your attention...

Katia Demaseure katia.demaseure @navteq.com

www.cvisproject.org

